A Crossing Lemma for the pair-crossing number

被引:1
|
作者
Ackerman, Eyal [1 ]
Schaefer, Marcus [2 ]
机构
[1] Dept. Math., Physics, and Comp. Sci, University of Haifa at Oranim, Tivon, Israel
[2] School of Computing, DePaul University, Chicago,IL,60604, United States
关键词
Crossing number - Graph G;
D O I
10.1007/978-3-662-45803-7_19
中图分类号
学科分类号
摘要
The pair-crossing number of a graph G, pcr(G), is the minimum possible number of pairs of edges that cross each other (possibly several times) in a drawing of G. It is known that there is a constant c ≥ 1/64 such that for every (not too sparse) graph G with n vertices and m edges pcr(G) ≥ c m3/n2. This bound is tight, up to the constant c. Here we show that c ≥ 1/34.2 if G is drawn without adjacent crossings. © Springer-Verlag Berlin Heidelberg 2014.
引用
收藏
页码:222 / 233
相关论文
共 50 条
  • [11] A bipartite strengthening of the Crossing Lemma
    Fox, Jacob
    Pach, Janos
    Toth, Csaba D.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (01) : 23 - 35
  • [12] A Crossing Lemma for Jordan curves
    Pach, Janos
    Rubin, Natan
    Tardos, Gabor
    ADVANCES IN MATHEMATICS, 2018, 331 : 908 - 940
  • [13] A bipartite strengthening of the Crossing Lemma
    Fox, Jacob
    Pach, Janos
    Toth, Csaba D.
    GRAPH DRAWING, 2008, 4875 : 13 - +
  • [14] Analogies between the Crossing Number and the Tangle Crossing Number
    Anderson, Robin
    Bai, Shuliang
    Barrera-Cruz, Fidel
    Czabarka, Eva
    Da Lozzo, Giordano
    Hobson, Natalie L. F.
    Lin, Jephian C-H
    Mohr, Austin
    Smith, Heather C.
    Szekely, Laszlo A.
    Whitlatch, Hays
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (04):
  • [15] Crossing Number and Weighted Crossing Number of Near-Planar Graphs
    Cabello, Sergio
    Mohar, Bojan
    ALGORITHMICA, 2011, 60 (03) : 484 - 504
  • [16] Crossing Number and Weighted Crossing Number of Near-Planar Graphs
    Sergio Cabello
    Bojan Mohar
    Algorithmica, 2011, 60 : 484 - 504
  • [17] Improvement on the Crossing Number of Crossing-Critical Graphs
    Barat, Janos
    Toth, Geza
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 67 (02) : 595 - 604
  • [18] Pair Crossing Number, Cutwidth, and Good Drawings on Arbitrary Point Sets
    Pi, Oriol Sole
    DISCRETE & COMPUTATIONAL GEOMETRY, 2025, 73 (02) : 310 - 326
  • [19] Triple crossing number and double crossing braid index
    Nishida, Daishiro
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2019, 28 (02)
  • [20] Improvement on the Crossing Number of Crossing-Critical Graphs
    János Barát
    Géza Tóth
    Discrete & Computational Geometry, 2022, 67 : 595 - 604