A Crossing Lemma for the pair-crossing number

被引:1
|
作者
Ackerman, Eyal [1 ]
Schaefer, Marcus [2 ]
机构
[1] Dept. Math., Physics, and Comp. Sci, University of Haifa at Oranim, Tivon, Israel
[2] School of Computing, DePaul University, Chicago,IL,60604, United States
关键词
Crossing number - Graph G;
D O I
10.1007/978-3-662-45803-7_19
中图分类号
学科分类号
摘要
The pair-crossing number of a graph G, pcr(G), is the minimum possible number of pairs of edges that cross each other (possibly several times) in a drawing of G. It is known that there is a constant c ≥ 1/64 such that for every (not too sparse) graph G with n vertices and m edges pcr(G) ≥ c m3/n2. This bound is tight, up to the constant c. Here we show that c ≥ 1/34.2 if G is drawn without adjacent crossings. © Springer-Verlag Berlin Heidelberg 2014.
引用
收藏
页码:222 / 233
相关论文
共 50 条
  • [1] A Crossing Lemma for the Pair-Crossing Number
    Ackerman, Eyal
    Schaefer, Marcus
    GRAPH DRAWING (GD 2014), 2014, 8871 : 222 - 233
  • [2] Crossing number, pair-crossing number, and expansion
    Kolman, P
    Matousek, J
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 92 (01) : 99 - 113
  • [3] Note on the pair-crossing number and the odd-crossing number
    Toth, Geza
    DISCRETE & COMPUTATIONAL GEOMETRY, 2008, 39 (04) : 791 - 799
  • [4] Note on the Pair-crossing Number and the Odd-crossing Number
    Géza Tóth
    Discrete & Computational Geometry, 2008, 39 : 791 - 799
  • [5] Crossing lemma for the odd-crossing number
    Karl, Janos
    Toth, Geza
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2023, 108
  • [6] A Crossing Lemma for Multigraphs
    Pach, Janos
    Toth, Geza
    DISCRETE & COMPUTATIONAL GEOMETRY, 2020, 63 (04) : 918 - 933
  • [7] A Crossing Lemma for Multigraphs
    János Pach
    Géza Tóth
    Discrete & Computational Geometry, 2020, 63 : 918 - 933
  • [8] Odd crossing number is not crossing number
    Pelsmajer, MJ
    Schaefer, M
    Stefankovic, D
    GRAPH DRAWING, 2006, 3843 : 386 - 396
  • [9] Odd Crossing Number and Crossing Number Are Not the Same
    Michael J. Pelsmajer
    Marcus Schaefer
    Daniel Štefankovič
    Discrete & Computational Geometry, 2008, 39 : 442 - 454
  • [10] Odd crossing number and crossing number are not the same
    Pelsmajer, Michael J.
    Schaefer, Marcus
    Stefankovic, Daniel
    DISCRETE & COMPUTATIONAL GEOMETRY, 2008, 39 (1-3) : 442 - 454