GFRP materials under high-velocity impact loading

被引:0
|
作者
Ernst, H.-J. [1 ,2 ]
Wolf, T. [1 ,2 ]
Hoog, K. [3 ]
Unckenbold, W.F. [4 ]
机构
[1] Fr.-Ger. Res. Inst. of Saint-Louis, P.O. Box 34, 68301 Saint Louis Cedex, France
[2] P.O. Box 1260, 79574 Weil am Rhein, Germany
[3] Märktweg 27D, 79576 Weil am Rhein, Germany
[4] INVENT GmbH, Abelnkarre 2a, 38100 Braunschweig, Germany
来源
| 2000年 / Editions de Physique, Les Ulis Cedex A, France卷 / 10期
关键词
Armor - Ballistics - Brittleness - Ductility - Impact testing;
D O I
暂无
中图分类号
学科分类号
摘要
Depth of penetration experiments with long rods impacting GFRP blocks of different thicknesses with high velocities yield residual penetrations in a steel-backing which indicate the ballistic performance of the investigated target. The material-related ballistic protection performances of three composites are compared with those of ductile and brittle target materials. One of the major aims of this investigation is to separate the dependence of the material of a target layer on the protective power from the influence of its environment, e.g. confinement. A formerly introduced ballistic material parameter, called ductile limit of the equivalence factor, sufficiently describes the protective power of brittle and ductile target materials. This approximation is successfully applied to GFRP's. It has been found that the ballistic resistance of a thick GFRP block grows with increasing penetration depth. The penetration behaviour of these composites differs completely from that of ductile or brittle materials and thus makes GFRP materials interesting for light-weight armour applications. Additionally a material-related explanation for the growing ballistic resistance is given.
引用
收藏
相关论文
共 50 条
  • [21] Destruction of organic glass under high-velocity impact
    I. K. Ermolaev
    Yu. A. Vinogradov
    N. N. Pilyugin
    High Temperature, 2000, 38 : 278 - 283
  • [22] Thermonuclear fusion under high-velocity cluster impact
    Lebedev, A.N.
    Fortov, V.E.
    Skvortsov, V.A.
    International Journal of Impact Engineering, 1997, 20 (6 -10 pt 2): : 511 - 515
  • [23] A finite element approach to model high-velocity impact on thin woven GFRP plates
    Alonso, L.
    Martinez-Hergueta, F.
    Garcia-Gonzalez, D.
    Navarro, C.
    Garcia-Castillo, S. K.
    Teixeira-Dias, F.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2020, 142
  • [24] The effect of hybridization on the GFRP behavior under high velocity impact
    Muhi, R. J.
    Najim, F.
    de Moura, M. F. S. F.
    COMPOSITES PART B-ENGINEERING, 2009, 40 (08) : 798 - 803
  • [25] LABORATORY INVESTIGATIONS OF CORN SHELLING UTILIZING HIGH-VELOCITY IMPACT LOADING
    BURKHARDT, TH
    STOUT, BA
    TRANSACTIONS OF THE ASAE, 1974, 17 (01): : 11 - 14
  • [26] A DYNAMIC CORN SHELLING THEORY BASED ON HIGH-VELOCITY IMPACT LOADING
    BURKHARD.TH
    STOUT, BA
    AGRICULTURAL ENGINEERING, 1970, 51 (10): : 569 - &
  • [27] CRATER FORMATION OF CARBON MATERIALS BY IMPACT OF A HIGH-VELOCITY SPHERE
    TANABE, Y
    SAITOH, T
    AKATSU, T
    SAWAOKA, A
    CARBON, 1995, 33 (11) : 1547 - 1552
  • [28] Tribology at high-velocity impact
    Karamis, M. Baki
    TRIBOLOGY INTERNATIONAL, 2007, 40 (01) : 98 - 104
  • [29] Introduction: High-velocity impact
    Nicholas, Theodore
    AIAA JOURNAL, 2008, 46 (02) : 289 - 289
  • [30] HIGH-VELOCITY IMPACT TESTER
    不详
    GUMMI FASERN KUNSTSTOFFE, 1985, 38 (09): : 492 - 492