Numerical study of the flame acceleration mechanisms of a lean hydrogen/air deflagration in an obstructed channel

被引:5
|
作者
Ramirez, Francis Adrian Meziat [1 ,2 ]
Vanbersel, Benjamin [1 ]
Dounia, Omar [1 ]
Jaravel, Thomas [1 ]
Douasbin, Quentin [1 ]
Vermorel, Olivier [1 ]
机构
[1] CERFACS, 42 Ave G Coriolis, F-31057 Toulouse 01, France
[2] Air Liquide, Paris Innovat Campus,1 Chemin Porte Loges, F-78354 Les Loges En Josas, France
关键词
Flame acceleration; Large Eddy Simulation; Explosion; Safety; Lean hydrogen; Combustion; LARGE-EDDY SIMULATION; PREMIXED TURBULENT COMBUSTION; TO-DETONATION TRANSITION; MIXTURES; AIR; PROPAGATION; CHAMBER; LES; EXPLOSIONS; SQUARE;
D O I
10.1016/j.ijhydene.2024.09.230
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, a three-dimensional, high fidelity LES of a fully premixed, lean hydrogen-air deflagration, in a confined and obstructed channel is performed. The experimental configuration studied is the GraVent explosion channel (L. Boeck et al., Shock Waves, 2016). A complete methodology to perform LES of lean hydrogen, strongly compressible deflagrations is presented. The capability of LES to quantitatively reproduce the main Flame Acceleration (FA) mechanisms of the fast deflagration is illustrated. The physics of FA are analysed and the contribution of the unburnt mixture flow aerodynamics to the absolute flame propagation speed, is evaluated. This is made possible by the access to the complete reactive flow fields, which are not available in the experiments. It is shown that the flow contraction, at fence-type obstacles, and the flame/vortex interaction, between the flame front and the turbulent structures in the wake of the obstacles, interact constructively, driving FA.
引用
收藏
页码:224 / 232
页数:9
相关论文
共 50 条
  • [1] Modeling of non-homogeneous premixed hydrogen-air flame acceleration and deflagration to detonation transition in an obstructed channel
    Sheng, Zhonghua
    Yang, Guogang
    Gao, Wei
    Li, Shian
    Shen, Qiuwan
    Sun, Han
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 1209 - 1222
  • [2] Numerical simulation of flame acceleration and deflagration to detonation transition in hydrogen-air mixture
    Heidari, A.
    Wen, J. X.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (36) : 21317 - 21327
  • [3] Flame acceleration and onset of detonation in inhomogeneous mixture of hydrogen-air in an obstructed channel
    Zhao, Xinyu
    Wang, Jiabao
    Gao, Longkun
    Wang, Xujiang
    Zhu, Yuejin
    AEROSPACE SCIENCE AND TECHNOLOGY, 2022, 130
  • [4] Impact of Radiative Losses on Flame Acceleration and Deflagration to Detonation Transition of Lean Hydrogen-Air Mixtures in a Macro-Channel with Obstacles
    Krishnamoorthy, Gautham
    Mulenga, Lucky Nteke
    FLUIDS, 2018, 3 (04):
  • [5] Study on inhomogeneous hydrogen-air mixture flame acceleration and deflagration-to-detonation transition
    Yang, Guogang
    Sheng, Zhonghua
    Li, Shian
    Shen, Qiuwan
    Sun, Han
    Xu, Zhuangzhuang
    PHYSICS OF FLUIDS, 2024, 36 (02)
  • [6] Numerical simulation of flame acceleration and DDT(deflagration to detonation transition) in hydrogen-air mixtures with concentration gradients
    Liu, Yang
    Yang, Xing
    Fu, Zhixi
    Chen, Peng
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2021,
  • [7] Numerical simulation of flame acceleration and deflagration-to-detonation transition in hydrogen-air mixtures with concentration gradients
    Wang, C. J.
    Wen, J. X.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (11) : 7657 - 7663
  • [8] Fast turbulent deflagration and DDT of hydrogen-air mixtures in small obstructed channel
    Teodorczyk, A.
    Drobniak, P.
    Dabkowski, A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (14) : 5887 - 5893
  • [9] Experimental and numerical investigation of the effect of end venting on flame acceleration in an obstructed channel
    Yanez, Jorge
    Lelyakin, Alexander
    Jordan, Thomas
    Alekseev, Victor
    Kuznetsov, Mike
    SCIENCE AND TECHNOLOGY OF ENERGETIC MATERIALS, 2011, 72 (3-4) : 86 - 89
  • [10] Flame acceleration and deflagration-to-detonation transition in hydrogen-air mixture in a channel with an array of obstacles of different shapes
    Xiao, Huahua
    Oran, Elaine S.
    COMBUSTION AND FLAME, 2020, 220 (378-393) : 378 - 393