Surrogate-assisted push and pull search for expensive constrained multi-objective optimization problems

被引:0
|
作者
Li, Wenji [1 ]
Mai, Ruitao [1 ]
Wang, Zhaojun [1 ]
Qiu, Yifeng [1 ]
Xu, Biao [1 ]
Hao, Zhifeng [2 ]
Fan, Zhun [3 ]
机构
[1] Department of Electronic Engineering, Shantou University, Shantou,515063, China
[2] College of Science, Shantou University, Shantou,515063, China
[3] Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen,518000, China
基金
中国国家自然科学基金;
关键词
Active learning - Adversarial machine learning - Contrastive Learning - Cost engineering - Multiobjective optimization - Pareto principle;
D O I
10.1016/j.swevo.2024.101728
中图分类号
学科分类号
摘要
In many real-world engineering optimizations, a large number of objective and constraint function values often need to be obtained through simulation software or physical experiments, which incurs significant computational costs and/or time expenses. These problems are known as expensive constraint multi-objective optimization problems (ECMOPs). This paper combines the push and pull search (PPS) framework and proposes a surrogate-assisted evolutionary algorithm to solve ECMOPs through Bayesian active learning, naming it the surrogate-assisted PPS (SA-PPS). Specifically, during the push search stage, candidate solutions are selected based on two indicators: hypervolume improvement and objective uncertainty. These aim to quickly guide the population towards the unconstrained Pareto front while ensuring diversity. During the pull search stage, the population is partitioned into many subregions through reference vectors, and different selection strategies are assigned to each subregion based on its state, aiming to guide the population towards the constrained Pareto front while ensuring diversity. Furthermore, we introduce a batch data selection strategy that utilizes Bayesian active learning to enable the surrogate model to focus on regions of interest in the pull search stage. Extensive experimental results have shown that the proposed SA-PPS algorithm exhibits superior convergence and diversity compared to 9 state-of-the-art algorithms across a variety of benchmark problems and a real-world optimization problem. © 2024
引用
收藏
相关论文
共 50 条
  • [1] Surrogate-assisted evolutionary algorithm for expensive constrained multi-objective discrete optimization problems
    Gu, Qinghua
    Wang, Qian
    Xiong, Neal N.
    Jiang, Song
    Chen, Lu
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (04) : 2699 - 2718
  • [2] Surrogate-assisted evolutionary algorithm for expensive constrained multi-objective discrete optimization problems
    Qinghua Gu
    Qian Wang
    Neal N. Xiong
    Song Jiang
    Lu Chen
    [J]. Complex & Intelligent Systems, 2022, 8 : 2699 - 2718
  • [3] A surrogate-assisted multi-objective particle swarm optimization of expensive constrained combinatorial optimization problems
    Gu, Qinghua
    Wang, Qian
    Li, Xuexian
    Li, Xinhong
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 223
  • [4] Surrogate-assisted MOEA/D for expensive constrained multi-objective optimization
    Yang, Zan
    Qiu, Haobo
    Gao, Liang
    Chen, Liming
    Liu, Jiansheng
    [J]. INFORMATION SCIENCES, 2023, 639
  • [5] A surrogate-assisted expensive constrained multi-objective global optimization algorithm and application
    Wang, Wenxin
    Dong, Huachao
    Wang, Xinjing
    Wang, Peng
    Shen, Jiangtao
    Liu, Guanghui
    [J]. APPLIED SOFT COMPUTING, 2024, 167
  • [6] A Surrogate-Assisted Offspring Generation Method for Expensive Multi-objective Optimization Problems
    Li, Fan
    Gao, Liang
    Shen, Weiming
    Cai, Xiwen
    Huang, Shifeng
    [J]. 2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [7] Push and pull search for solving constrained multi-objective optimization problems
    Fan, Zhun
    Li, Wenji
    Cai, Xinye
    Li, Hui
    Wei, Caimin
    Zhang, Qingfu
    Deb, Kalyanmoy
    Goodman, Erik
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2019, 44 : 665 - 679
  • [8] A Parallel Surrogate-Assisted Multi-Objective Evolutionary Algorithm for Computationally Expensive Optimization Problems
    Syberfeldt, Anna
    Grimm, Henrik
    Ng, Amos
    John, Robert I.
    [J]. 2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 3177 - +
  • [9] A classification surrogate-assisted multi-objective evolutionary algorithm for expensive optimization
    Li, Jinglu
    Wang, Peng
    Dong, Huachao
    Shen, Jiangtao
    Chen, Caihua
    [J]. KNOWLEDGE-BASED SYSTEMS, 2022, 242
  • [10] A surrogate-assisted evolution strategy for constrained multi-objective optimization
    Datta, Rituparna
    Regis, Rommel G.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2016, 57 : 270 - 284