A surrogate-assisted expensive constrained multi-objective global optimization algorithm and application

被引:0
|
作者
Wang, Wenxin [1 ]
Dong, Huachao [1 ]
Wang, Xinjing [1 ]
Wang, Peng [1 ]
Shen, Jiangtao [1 ]
Liu, Guanghui [1 ]
机构
[1] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710068, Peoples R China
基金
中国国家自然科学基金;
关键词
Bi-level selection; Adaptive sampling; Global optimization; Expensive constrained multi-objective; Blended-wing-body underwater glider; EVOLUTIONARY ALGORITHM; DESIGN; STRATEGY;
D O I
10.1016/j.asoc.2024.112226
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Expensive multi-objective optimization problems (MOPs) have seen the successful applications of surrogateassisted evolutionary algorithms (SAEAs). Nevertheless, the majority of SAEAs are developed for costly unconstrained optimization, and costly constrained MOPs (CMOPs) have received less attention. Therefore, this article proposes a surrogate-assisted global optimization algorithm (named CTEA) for solving CMOPs within a very limited number of fitness evaluations. The proposed algorithm combines two selection frameworks, a bi-level selection framework, and an adaptive sampling framework, to enhance optimization performance. Leveraging on a constraint-improving strategy and a Pareto-based three-indicator criterion (convergence, constraint, and diversity indicators) at the different levels, the proposed bi-level selection framework can select more promising solutions. Moreover, an adaptive sampling framework is developed to prioritize objective and constraint functions and select the candidate solutions for real function evaluations according to the priority. Experimental results demonstrate that the proposed CTEA exhibits superior performance when compared with five state-of-theart algorithms, achieving the best results in 61.9% out of the 64 test instances. Finally, CTEA is applied to the multidisciplinary design optimization of blended-wing-body underwater gliders, and an impressive solution set is obtained.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Surrogate-assisted evolutionary algorithm for expensive constrained multi-objective discrete optimization problems
    Gu, Qinghua
    Wang, Qian
    Xiong, Neal N.
    Jiang, Song
    Chen, Lu
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (04) : 2699 - 2718
  • [2] Surrogate-assisted evolutionary algorithm for expensive constrained multi-objective discrete optimization problems
    Qinghua Gu
    Qian Wang
    Neal N. Xiong
    Song Jiang
    Lu Chen
    [J]. Complex & Intelligent Systems, 2022, 8 : 2699 - 2718
  • [3] Surrogate-assisted MOEA/D for expensive constrained multi-objective optimization
    Yang, Zan
    Qiu, Haobo
    Gao, Liang
    Chen, Liming
    Liu, Jiansheng
    [J]. INFORMATION SCIENCES, 2023, 639
  • [4] A classification surrogate-assisted multi-objective evolutionary algorithm for expensive optimization
    Li, Jinglu
    Wang, Peng
    Dong, Huachao
    Shen, Jiangtao
    Chen, Caihua
    [J]. KNOWLEDGE-BASED SYSTEMS, 2022, 242
  • [5] A Surrogate-Assisted Expensive Constrained Multi-Objective Optimization Algorithm Based on Adaptive Switching of Acquisition Functions
    Wu, Haofeng
    Chen, Qingda
    Jin, Yaochu
    Ding, Jinliang
    Chai, Tianyou
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (02): : 2050 - 2064
  • [6] Surrogate-assisted push and pull search for expensive constrained multi-objective optimization problems
    Li, Wenji
    Mai, Ruitao
    Wang, Zhaojun
    Qiu, Yifeng
    Xu, Biao
    Hao, Zhifeng
    Fan, Zhun
    [J]. Swarm and Evolutionary Computation, 2024, 91
  • [7] A surrogate-assisted multi-objective particle swarm optimization of expensive constrained combinatorial optimization problems
    Gu, Qinghua
    Wang, Qian
    Li, Xuexian
    Li, Xinhong
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 223
  • [8] A bagging-based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization
    Liu, Yuanchao
    Liu, Jianchang
    Tan, Shubin
    Yang, Yongkuan
    Li, Fei
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (14): : 12097 - 12118
  • [9] A bagging-based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization
    Yuanchao Liu
    Jianchang Liu
    Shubin Tan
    Yongkuan Yang
    Fei Li
    [J]. Neural Computing and Applications, 2022, 34 : 12097 - 12118
  • [10] A pairwise comparison based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization
    Tian, Ye
    Hu, Jiaxing
    He, Cheng
    Ma, Haiping
    Zhang, Limiao
    Zhang, Xingyi
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2023, 80