Hybrid Domain Decomposition Solvers for the Helmholtz and the Time Harmonic Maxwell's Equation

被引:0
|
作者
Huber, M. [1 ]
Pechstein, A. [2 ]
Schöberl, J. [1 ]
机构
[1] Institute for Analysis and Scientific Computing, Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria
[2] Institute for Technical Mechanics, Altenbergerstrasse 69, A-4040 Linz, Austria
来源
Lecture Notes in Computational Science and Engineering | 2013年 / 91卷
关键词
12;
D O I
10.1007/978-3-642-35275-1_32
中图分类号
学科分类号
摘要
引用
收藏
页码:279 / 287
相关论文
共 50 条
  • [31] An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations
    Alonso, A
    Valli, A
    MATHEMATICS OF COMPUTATION, 1999, 68 (226) : 607 - 631
  • [32] Effective cell-centred time-domain Maxwell's equations numerical solvers
    Vegh, V
    Turner, IW
    Zhao, H
    APPLIED MATHEMATICAL MODELLING, 2005, 29 (05) : 411 - 438
  • [33] Designing high-order, time-domain numerical solvers for Maxwell's equations
    Young, JL
    Nystrom, JF
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM - ANTENNAS: GATEWAYS TO THE GLOBAL NETWORK, VOLS 1-4, 1998, : 546 - 549
  • [34] DOMAIN DECOMPOSITION PRECONDITIONING FOR THE HIGH-FREQUENCY TIME-HARMONIC MAXWELL EQUATIONS WITH ABSORPTION
    Bonazzoli, M.
    Dolean, V
    Graham, I. G.
    Spence, E. A.
    Tournier, R-H
    MATHEMATICS OF COMPUTATION, 2019, 88 (320) : 2559 - 2604
  • [35] Stable boundary element domain decomposition methods for the Helmholtz equation
    Steinbach, O.
    Windisch, M.
    NUMERISCHE MATHEMATIK, 2011, 118 (01) : 171 - 195
  • [36] Convergence of parallel overlapping domain decomposition methods for the Helmholtz equation
    Shihua Gong
    Martin J. Gander
    Ivan G. Graham
    David Lafontaine
    Euan A. Spence
    Numerische Mathematik, 2022, 152 : 259 - 306
  • [37] Convergence of parallel overlapping domain decomposition methods for the Helmholtz equation
    Gong, Shihua
    Gander, Martin J.
    Graham, Ivan G.
    Lafontaine, David
    Spence, Euan A.
    NUMERISCHE MATHEMATIK, 2022, 152 (02) : 259 - 306
  • [38] A Domain Decomposition Solver for the Discontinuous Enrichment Method for the Helmholtz Equation
    Farhat, C. (cfarhat@stanford.edu), 1600, Springer Verlag, Tiergartenstrasse 17, Heidelberg, D-69121, Germany (91):
  • [39] DOMAIN DECOMPOSITION WITH LOCAL IMPEDANCE CONDITIONS FOR THE HELMHOLTZ EQUATION WITH ABSORPTION
    Graham, Ivan G.
    Spence, Euan A.
    ZOU, Jun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (05) : 2515 - 2543
  • [40] A PARALLEL DOMAIN DECOMPOSITION METHOD FOR THE HELMHOLTZ EQUATION IN LAYERED MEDIA
    Heikkola, Erkki
    Ito, Kazufumi
    Toivanen, Jari
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05): : C505 - C521