Hole transport materials for scalable p-i-n perovskite solar modules

被引:1
|
作者
Li, Sibo [1 ,2 ]
Wang, Xin [2 ]
Huang, Nuanshan [2 ]
He, Sisi [1 ,3 ]
Qiu, Longbin [2 ]
Qi, Yabing [4 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin 150001, Peoples R China
[2] Southern Univ Sci & Technol, SUSTech Energy Inst Carbon Neutral, Dept Mech & Energy Engn, Shenzhen Key Lab Intelligent Robot & Flexible Mfg, Shenzhen 518055, Peoples R China
[3] Univ Town, Harbin Inst Technol Shenzhen, Sch Sci, Shenzhen Key Lab Flexible Printed Elect Technol, Shenzhen 518055, Guangdong, Peoples R China
[4] Shanghai Jiao Tong Univ, Global Inst Future Technol, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Hole transport layer; Buried interface; Perovskite; Stability; Scalable; NICKEL-OXIDE; LARGE-AREA; LOW-COST; EFFICIENT; CELLS; LAYER; NIOX; LEAD; PERFORMANCE; INTERFACE;
D O I
10.1016/j.enchem.2024.100135
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Perovskite solar cells (PSCs) have emerged as a promising avenue for sustainable energy production, offering high efficiency at a low cost. However, the commercialization of PSCs is significantly influenced by the characteristics and properties of the perovskite bottom layers. In this review, we explore the implications of the perovskite bottom layers of inverted p-i-n PSCs, specifically the hole transport layer (HTL) and the HTL/ perovskite interface, which plays an important role in the commercial viability of PSCs, including the key factors such as scalability, stability, and environmental safety. We examine the scalability challenge, which is essential for moving from lab-scale prototypes to mass production, through layer uniformity and compatibility with broadscale manufacturing techniques. Stability issues include both the operational lifespan and environmental durability of PSCs, highlighting the significance of the bottom layers in safeguarding against degradation. Furthermore, we venture into environmental safety measures, emphasizing the approaches to curtailing lead leakage via sophisticated HTL and HTL/perovskite interface engineering. Through a holistic evaluation of these pivotal aspects, this review aims to establish a blueprint for forthcoming enhancements in PSC technology, highlighting the imperative of optimizing the HTL and HTL/perovskite interface to navigate commercialization obstacles and fully explore the potential of PSCs in sustainable energy production.
引用
收藏
页数:38
相关论文
共 50 条
  • [31] Amphiphilic hole-transporting materials minimize the buried interfacial defects for efficient p-i-n perovskite solar cells
    Yongfang Li
    Science China(Chemistry), 2023, (08) : 2155 - 2156
  • [32] Amphiphilic hole-transporting materials minimize the buried interfacial defects for efficient p-i-n perovskite solar cells
    Yongfang Li
    Science China(Chemistry), 2023, 66 (08) : 2155 - 2156
  • [33] Amphiphilic hole-transporting materials minimize the buried interfacial defects for efficient p-i-n perovskite solar cells
    Yongfang Li
    Science China Chemistry, 2023, 66 : 2155 - 2156
  • [34] p-i-n Perovskite Solar Cells on Steel Substrates
    Feleki, Benjamin T.
    Bouwer, Ricardo K. M.
    Zardetto, Valerio
    Wienk, Martijn M.
    Janssen, Rene A. J.
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (06) : 6709 - 6715
  • [35] Thieno-imidazole based small molecule hole transport materials for dopant-free, efficient inverted (p-i-n) perovskite solar cells
    Akula, Suri Babu
    Su, Chaochin
    Tingare, Yogesh S.
    Lan, Hui-Ching
    Lin, You-Jing
    Wang, Yi-Ting
    Jheng, Yu-Chen
    Lin, Xiang-Ching
    Chang, Yu-Chi
    Li, Wen-Ren
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (46) : 16577 - 16583
  • [36] Molecular design with silicon core: toward commercially available hole transport materials for high-performance planar p-i-n perovskite solar cells
    Xue, Rongming
    Zhang, Moyao
    Xu, Guiying
    Zhang, Jingwen
    Chen, Weijie
    Chen, Haiyang
    Yang, Ming
    Cui, Chaohua
    Li, Yaowen
    Li, Yongfang
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (02) : 404 - 413
  • [37] Inverted Hysteresis in n-i-p and p-i-n Perovskite Solar Cells
    Garcia-Rodriguez, Rodrigo
    Riquelme, Antonio J.
    Cowley, Matthew
    Valadez-Villalobos, Karen
    Oskam, Gerko
    Bennett, Laurence J.
    Wolf, Matthew J.
    Contreras-Bernal, Lidia
    Cameron, Petra J.
    Walker, Alison B.
    Anta, Juan A.
    ENERGY TECHNOLOGY, 2022, 10 (12)
  • [38] Reduced Lattice Mismatch at the Interface of Perovskite and LaNiO3 Hole Transport Layers for Highly Efficient p-i-n Perovskite Solar Cells
    Lin, Changhong
    Zou, Yihui
    Hu, Haihua
    Lin, Ping
    Wang, Peng
    Wu, Xiaoping
    Xu, Lingbo
    Cui, Can
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (06) : 2496 - 2503
  • [39] Blading of Conformal Electron-Transport Layers in p-i-n Perovskite Solar Cells
    Uddin, Md Aslam
    Rana, Prem Jyoti Singh
    Ni, Zhenyi
    Dai, Xuezeng
    Yu, Zhenhua
    Shi, Zhifang
    Jiao, Haoyang
    Huang, Jinsong
    ADVANCED MATERIALS, 2022, 34 (30)
  • [40] New Hybrid Hole Extraction Layer of Perovskite Solar Cells with a Planar p-i-n Geometry
    Park, Ik Jae
    Park, Min Ah
    Kim, Dong Hoe
    Park, Gyeong Do
    Kim, Byeong Jo
    Son, Hae Jung
    Ko, Min Jae
    Lee, Doh-Kwon
    Park, Taiho
    Shin, Hyunjung
    Park, Nam-Gyu
    Jung, Hyun Suk
    Kim, Jin Young
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (49): : 27285 - 27290