Sm-doped SnO2 nanostructures for aqueous ammonia sensing application

被引:0
|
作者
Rani, Nishu [1 ]
Kumar, Vijay [1 ]
Kumar, Sunil [1 ]
Yadav, Sandeep [1 ]
Babu, Sridhar [2 ]
机构
[1] Indira Gandhi Univ, Dept Phys, Rewari, Haryana, India
[2] BML Univ, Dept Phys, Gurugram, Haryana, India
关键词
Compendex;
D O I
10.1007/s10854-024-13721-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reports the synthesis of Sm-doped tin oxide nanostructures using a co-precipitation route to develop an aqueous ammonia sensor. The characterization of as-prepared samples was carried out by XRD, FESEM, FTIR, UV-Visible absorption spectroscopy, and energy-resolved photoluminescence, respectively. The crystallite size range is from 8 +/- 0.4 nm to 17 +/- 1 nm. All samples show nearly spherical morphology with a grain size range of 35-70 nm. FTIR spectra correspond to O-H, C=O, Sn-OH, and Sn-O-Sn functional groups, confirming the formation of SnO2 nanostructures. The energy band gap varies from 2.71 eV to 3.09 eV. An increase in bandgap observed for 9at% Sm-doped SnO2 nanostructures may be due to the Moss-Burstein effect. Photoluminescence studies show the increase in band-to-band and defect-related emission with the addition of a dopant and an increase in dopant concentration. Linear sweep Voltammetry of undoped and Sm-doped tin oxide nanostructures was done to develop an aqueous ammonia sensor. I-V characteristics show a rise in current for undoped and Sm-doped SnO2 nanostructured layers when immersed in water containing ammonia. The analyte detection capability of the samples also increases with an increase in Sm-dopant (3% to 9%) as well as with analyte (NH3) concentration (100 ppm to 500 ppm) in water.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] SnO2 doped ZnO nanostructures for highly efficient photocatalyst
    Faisal, M.
    Ibrahim, Ahmed A.
    Harraz, Farid A.
    Bouzid, Houcine
    Al-Assiri, M. S.
    Ismail, Adel A.
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2015, 397 : 19 - 25
  • [32] Structural and Cathodoluminescence of Sb-Doped SnO2 Nanostructures
    Lin, Yu-Hung
    Kuo, Chun-Cha
    Chen, Uei-Shin
    Wu, Jyh-Ming
    Chang, Yee-Shyi
    Shih, Han C.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (04) : 2336 - 2341
  • [33] Synthesis, characterization and enhanced acetone sensing performance of Pd loaded Sm doped SnO2 nanoparticles
    Shaikh, F. I.
    Chikhale, L. P.
    Mulla, I. S.
    Suryavanshi, S. S.
    CERAMICS INTERNATIONAL, 2017, 43 (13) : 10307 - 10315
  • [34] Application of TiO2/SnO2 nanoparticles in photoluminescence based fast ammonia gas sensing
    Singh N.
    Pandey V.
    Singh N.
    Malik M.M.
    Haque F.Z.
    Haque, Fozia Z. (foziazia@rediffmail.com), 1600, Optical Society of India (46): : 199 - 203
  • [35] Non-Aqueous Atomic Layer Deposition of SnO2 for Gas Sensing Application
    Marichy, C.
    Silva, R. M.
    Pinna, N.
    Willinger, M-G
    Donato, N.
    Neri, G.
    ATOMIC LAYER DEPOSITION APPLICATIONS 14, 2018, 86 (06): : 55 - 65
  • [36] Comparison of ammonia sensing characteristics of individual SnO2 nanowire and SnO2 sol-gel nanocomposite
    Shaposhnik, A.
    Ryabtsev, S.
    Shao, F.
    Hernandez-Ramirez, F.
    Morante, J.
    Zviagin, A.
    Sizask, E.
    Shaposhnik, D.
    28TH EUROPEAN CONFERENCE ON SOLID-STATE TRANSDUCERS (EUROSENSORS 2014), 2014, 87 : 951 - 954
  • [37] Ni-doped SnO2 thin films for NO2 gas sensing application
    Abdul Wahid K.I.
    Chaker C.
    Chaker H.
    Sensors and Actuators A: Physical, 2023, 360
  • [38] Ammonia Sensing Performance of an Al-Doped SnO2 Thin Film Decorated With Platinum Nanoparticles
    Zhu, Bo-Xun
    Chiu, Chao-Chun
    Jian, Jia-Jin
    Lin, Kun-Wei
    Hsu, Wei-Chou
    Liu, Wen-Chau
    IEEE ELECTRON DEVICE LETTERS, 2023, 44 (12) : 2043 - 2046
  • [39] A novel SnO2 nanostructures and their gas-sensing properties for CO
    Xu, Lingna
    Chen, Weigen
    Jin, Lingfeng
    Zeng, Wen
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2016, 27 (05) : 4826 - 4832
  • [40] A novel SnO2 nanostructures and their gas-sensing properties for CO
    Lingna Xu
    Weigen Chen
    Lingfeng Jin
    Wen Zeng
    Journal of Materials Science: Materials in Electronics, 2016, 27 : 4826 - 4832