Functional generalized canonical correlation analysis for studying multiple longitudinal variables

被引:0
|
作者
Sort, Lucas [1 ]
Le Brusquet, Laurent [1 ]
Tenenhaus, Arthur [1 ]
机构
[1] Univ Paris Saclay, CNRS, CentraleSupelec, Lab Signaux & Syst, F-91190 Gif Sur Yvette, France
关键词
functional data; generalized canonical correlation analysis; longitudinal data; SETS;
D O I
10.1093/biomtc/ujae113
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we introduce functional generalized canonical correlation analysis, a new framework for exploring associations between multiple random processes observed jointly. The framework is based on the multiblock regularized generalized canonical correlation analysis framework. It is robust to sparsely and irregularly observed data, making it applicable in many settings. We establish the monotonic property of the solving procedure and introduce a Bayesian approach for estimating canonical components. We propose an extension of the framework that allows the integration of a univariate or multivariate response into the analysis, paving the way for predictive applications. We evaluate the method's efficiency in simulation studies and present a use case on a longitudinal dataset.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Functional regularized generalized canonical correlation analysis
    Wang Z.
    Tenenhaus A.
    Wang H.
    Zhao Q.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (10): : 1960 - 1969
  • [2] Functional Multiple-Set Canonical Correlation Analysis
    Hwang, Heungsun
    Jung, Kwanghee
    Takane, Yoshio
    Woodward, Todd S.
    PSYCHOMETRIKA, 2012, 77 (01) : 48 - 64
  • [3] Functional Multiple-Set Canonical Correlation Analysis
    Heungsun Hwang
    Kwanghee Jung
    Yoshio Takane
    Todd S. Woodward
    Psychometrika, 2012, 77 : 48 - 64
  • [4] Longitudinal canonical correlation analysis
    Lee, Seonjoo
    Choi, Jongwoo
    Fang, Zhiqian
    Bowman, F. DuBois
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2023, 72 (03) : 587 - 607
  • [5] Multiple linear regression on canonical correlation variables
    Foucart, T
    BIOMETRICAL JOURNAL, 1999, 41 (05) : 559 - 572
  • [6] On generalized controllability canonical form with multiple input variables
    Ning Cai
    M. Junaid Khan
    International Journal of Control, Automation and Systems, 2017, 15 : 169 - 177
  • [7] On Generalized Controllability Canonical Form with Multiple Input Variables
    Cai, Ning
    Khan, M. Junaid
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2017, 15 (01) : 169 - 177
  • [8] Regularized Generalized Canonical Correlation Analysis
    Arthur Tenenhaus
    Michel Tenenhaus
    Psychometrika, 2011, 76
  • [9] Robust generalized canonical correlation analysis
    Yan, He
    Cheng, Li
    Ye, Qiaolin
    Yu, Dong-Jun
    Qi, Yong
    APPLIED INTELLIGENCE, 2023, 53 (18) : 21140 - 21155
  • [10] Tensor generalized canonical correlation analysis
    Girka, Fabien
    Gloaguen, Arnaud
    Le Brusquet, Laurent
    Zujovic, Violetta
    Tenenhaus, Arthur
    INFORMATION FUSION, 2024, 102