Spark-based ensemble learning for imbalanced data classification

被引:0
|
作者
Ding J. [1 ]
Wang S. [1 ]
Jia L. [1 ]
You J. [1 ]
Jiang Y. [1 ]
机构
[1] Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming
基金
中国国家自然科学基金;
关键词
Comprehensive weight; Ensemble learning; Imbalanced data classification; Random forest; Spark;
D O I
10.23940/ijpe.18.05.p14.955964
中图分类号
学科分类号
摘要
With the rapid expansion of Big Data in all science and engineering domains, imbalanced data classification become a more acute problem in various real-world datasets. It is notably difficult to develop an efficient model by using mechanically the current data mining and machine learning algorithms. In this paper, we propose a Spark-based Ensemble Learning for imbalanced data classification approach (SELidc in short). The key point of SELidc lies in preprocessing to balance the imbalanced datasets, and to improve the performance and reduce fitting for the big and imbalanced data by building distributed ensemble learning algorithm. So, SELidc firstly converts the original imbalanced dataset into resilient distributed datasets. Next, in the sampling process, it samples by comprehensive weight, which is obtained in accordance with the weight of each class in majority class and the number of minority class samples. After that, it trains several classifiers with random forest in Spark environment by the correlation feature selection means. Experiments on publicly available UCI datasets and other datasets demonstrate that SELidc achieves more prominent results than other related approaches across various evaluation metrics, it makes full use of the efficient computing power of Spark distributed platform in training the massive data. © 2018 Totem Publisher, Inc. All rights reserved.
引用
收藏
页码:945 / 964
页数:19
相关论文
共 50 条
  • [41] A Heterogeneous AdaBoost Ensemble Based Extreme Learning Machines for Imbalanced Data
    Abuassba, Adnan Omer
    Zhang, Dezheng
    Luo, Xiong
    INTERNATIONAL JOURNAL OF COGNITIVE INFORMATICS AND NATURAL INTELLIGENCE, 2019, 13 (03) : 19 - 35
  • [42] An Ensemble Tree Classifier for Highly Imbalanced Data Classification
    Shi, Peibei
    Wang, Zhong
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2021, 34 (06) : 2250 - 2266
  • [43] Imbalanced Data Classification Using Weighted Voting Ensemble
    Lu, Lin
    Wozniak, Michal
    IMAGE PROCESSING AND COMMUNICATIONS: TECHNIQUES, ALGORITHMS AND APPLICATIONS, 2020, 1062 : 82 - 91
  • [44] Ensemble learning based predictive modelling on a highly imbalanced multiclass data
    Vasti, Manka
    Dev, Amita
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2024, 45 (08): : 2141 - 2164
  • [45] An Ensemble Tree Classifier for Highly Imbalanced Data Classification
    SHI Peibei
    WANG Zhong
    Journal of Systems Science & Complexity, 2021, 34 (06) : 2250 - 2266
  • [46] Adaptive ensemble of classifiers with regularization for imbalanced data classification
    Wang, Chen
    Deng, Chengyuan
    Yu, Zhoulu
    Hui, Dafeng
    Gong, Xiaofeng
    Luo, Ruisen
    INFORMATION FUSION, 2021, 69 : 81 - 102
  • [47] Fuzzy integral-based ELM ensemble for imbalanced big data classification
    Zhai, Junhai
    Zhang, Sufang
    Zhang, Mingyang
    Liu, Xiaomeng
    SOFT COMPUTING, 2018, 22 (11) : 3519 - 3531
  • [48] A New Optimal Ensemble Algorithm Based on SVDD Sampling for Imbalanced Data Classification
    Pirgazi, Jamshid
    Pirmohammadi, Abbas
    Shams, Reza
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (06)
  • [49] Empirical Assessment of Ensemble based Approaches to Classify Imbalanced Data in Binary Classification
    Kaur, Prabhjot
    Gosain, Anjana
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (03) : 48 - 58
  • [50] An Ensemble Tree Classifier for Highly Imbalanced Data Classification
    Peibei Shi
    Zhong Wang
    Journal of Systems Science and Complexity, 2021, 34 : 2250 - 2266