Mechanical modulation wave energy harvesting for self-powered marine environment monitoring

被引:0
|
作者
Zou, Hong-Xiang [1 ]
Zhou, Wen-Zhuo [1 ]
Su, Chang-Sheng [1 ]
Guo, Ding-Hua [1 ]
Zhao, Lin-Chuan [2 ]
Gao, Qiu-Hua [2 ]
Wei, Ke-Xiang [1 ]
机构
[1] Hunan Inst Engn, Sch Mech Engn, 88 Fuxing East Rd, Xiangtan 411104, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Mech Engn, State Key Lab Mech Syst & Vibrat, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Wave energy harvesting; Mechanical modulation; Self-powered environmental monitoring; TRIBOELECTRIC NANOGENERATOR; CONVERTER; FUTURE;
D O I
10.1016/j.oceaneng.2024.119683
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Small-scale wave energy harvesting can be used for self-powered marine environmental monitoring, with the advantages of sustainability, convenience, and environmental protection. The low-frequency and strong random fluctuations of ocean wave motion are not conducive to electromechanical conversion. In this paper, we propose a mechanically modulated wave energy harvester embedded with interference-free triboelectric nanogenerators. The mass pendulum oscillates under irregular low-frequency wave excitation, and then the oscillation is mechanically modulated into a unidirectional high-speed rotation of four permanent magnet disks. The elastic parts on both sides of the mass pendulum are functionalized into multi-layered folding triboelectric nanogenerators, which neither increase the volume of the wave energy harvesting system nor affect the operation of the electromagnetic generator. The prototype was manufactured and the experimental results show that the sum of the average power of the prototype is 4.8 W under excitation at a frequency of 3 Hz and a inclination angle of 40 degrees. The 0.47 F capacitor can be charged to 5 V in 80 s by the prototype under the wave excitation generated by push plate, and then used for self-powered marine environmental monitoring (illumination, temperature and pH) and wireless information transmission.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Self-powered wireless sensing platform for monitoring marine life based on harvesting hydrokinetic energy of water currents
    Ahmed, Abdelsalam
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (04) : 1992 - 1998
  • [22] A mechanical solution of self-powered SSHI interface for piezoelectric energy harvesting systems
    Liu, Haili
    Ge, Cong
    Liang, Junrui
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2015, 2015, 9431
  • [23] Underwater hybrid energy harvesting based on TENG-MTEG for self-powered marine mammal condition monitoring system
    Liu, C.
    Qu, G.
    Shan, B.
    Aranda, R.
    Chen, N.
    Li, H.
    Zhou, Z.
    Yu, T.
    Wang, C.
    Mi, J.
    Xu, M.
    MATERIALS TODAY SUSTAINABILITY, 2023, 21
  • [24] Energy Harvesting towards Self-Powered IoT Devices
    Elahi, Hassan
    Munir, Khushboo
    Eugeni, Marco
    Atek, Sofiane
    Gaudenzi, Paolo
    ENERGIES, 2020, 13 (21)
  • [25] Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics
    Fan, Feng Ru
    Tang, Wei
    Wang, Zhong Lin
    ADVANCED MATERIALS, 2016, 28 (22) : 4283 - 4305
  • [26] Environmental energy harvesting boosts self-powered sensing
    Luo, Hongchun
    Yang, Tao
    Jing, Xingjian
    Cui, Yingxuan
    Qin, Weiyang
    MATERIALS TODAY ENERGY, 2024, 40
  • [27] Broadband Vibration Energy Harvesting from Underground Trains for Self-Powered Condition Monitoring
    Fu, Hailing
    Song, Wenzhe
    Qin, Yong
    Yeatman, Eric M.
    2019 19TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS), 2020,
  • [28] Energy harvesting and speed sensing with a hybrid rotary generator for self-powered wireless monitoring
    Wang, Zhixia
    Qiu, Hongyun
    Jiao, Xuanbo
    Wang, Wei
    Zhang, Qichang
    Tian, Ruilan
    Cao, Dongxing
    ACTA MECHANICA SINICA, 2024, 40 (09)
  • [29] Harvesting Ocean Wave Energy via Magnetoelastic Generators for Self-Powered Hydrogen Production
    Ock, Il Woo
    Zhou, Yihao
    Zhao, Xun
    Manshaii, Farid
    Chen, Jun
    ACS ENERGY LETTERS, 2024, 9 (04): : 1701 - 1709
  • [30] Bio-inspired structures for energy harvesting self-powered sensing and smart monitoring
    Cui, Yingxuan
    Luo, Hongchun
    Yang, Tao
    Qin, Weiyang
    Jing, Xingjian
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 228