New simple reference state model of the third-order piecewise-linear dynamical systems

被引:0
|
作者
Pospisil, Jiri [1 ]
Kolka, Zdenek [1 ]
Horska, Jana [1 ]
Brzobohaty, Jaromir [2 ]
机构
[1] Institute of Radio Electronics, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
[2] Institute of Microelectronics, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
关键词
State models - Third-order piecewise-linear dynamical systems - Topological conjugacy;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:7 / 10
相关论文
共 50 条
  • [41] A new simple third-order shear deformation theory of plates
    Shi, Guanyu
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2007, 44 (13) : 4399 - 4417
  • [42] A simple approach to calculation and control of unstable periodic orbits in chaotic piecewise-linear systems
    Ueta, T
    Chen, GR
    Kawabe, T
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (01): : 215 - 224
  • [43] Smoothed Piecewise Linear Lyapunov Function for the First Order Dynamical Systems
    Voliansky, Roman
    Shramko, Iurii
    Volianska, Nina
    Tolochko, Olga
    Sadovoi, Oleksandr
    INTEGRATED COMPUTER TECHNOLOGIES IN MECHANICAL ENGINEERING-2023, VOL 1, ICTM 2023, 2024, 1008 : 268 - 278
  • [44] A piecewise-linear moment-matching approach to parameterized model-order reduction for highly nonlinear systems
    Bond, Bradley N.
    Daniel, Luca
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2007, 26 (12) : 2116 - 2129
  • [45] ANALYSIS OF THE PERIODIC REGIMES STABILITY IN PIECEWISE-LINEAR NONAUTONOMOUS HIGH-ORDER SYSTEMS
    OBYEDKOV, AF
    RADIOTEKHNIKA I ELEKTRONIKA, 1980, 25 (08): : 1668 - 1676
  • [46] An Improved Linearization Point Selection Method in Trajectory Piecewise-linear Model Order Reduction
    Liu, Ying
    Wang, Xiaodong
    PROCEEDINGS OF 2016 IEEE ADVANCED INFORMATION MANAGEMENT, COMMUNICATES, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IMCEC 2016), 2016, : 459 - 463
  • [47] A trajectory piecewise-linear approach to model order reduction for nonlinear stationary magnetic devices
    Qu, LY
    Chapman, PL
    PROCEEDINGS OF THE 2004 IEEE WORKSHOP ON COMPUTERS IN POWER ELECTRONICS, 2004, : 15 - 19
  • [49] On the onset of quasi-periodic solutions in third-order nonlinear dynamical systems
    Genesio, R
    Ghilardi, C
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (10): : 3165 - 3180
  • [50] Nilpotent integrability, reduction of dynamical systems and a third-order Calogero–Moser system
    A. Ibort
    G. Marmo
    M. A. Rodríguez
    P. Tempesta
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 1513 - 1540