Central difference Kalman-probability hypothesis density filter for multiple speakers tracking

被引:0
|
作者
机构
[1] Chen, Liming
[2] Zhang, Yi
[3] Yu, Weimin
来源
Chen, L. (chenliming@dlnu.edu.cn) | 1600年 / Binary Information Press卷 / 11期
关键词
Bandpass filters - Nonlinear filtering - Probability - Polynomial approximation - Speech recognition - Probability density function;
D O I
10.12733/jics20103555
中图分类号
学科分类号
摘要
Aiming at nonlinear system model in multiple speakers tracking, a central difference Kalman-probability hypothesis density filter for multiple speakers tracking is proposed in this paper. Time difference of arrival for microphone array is taken as measurement, Stirling interpolation formula is utilized to derive polynomial approximations of nonlinear functions, central difference Kalman filter and Gaussian mixture probability hypothesis density filter are applied to estimate first-order statistical moment of posterior multiple speakers states, and finally multiple speakers tracking of nonlinear Gaussian system is realized while the speakers states are extracted by recursive updating. Simulation results show that the robustness of the algorithm is enhanced, and estimation accuracy of multiple speakers number and states is improved. Copyright © 2014 Binary Information Press.
引用
收藏
相关论文
共 50 条
  • [21] Current Statistical Model Probability Hypothesis Density Filter for Multiple Maneuvering Targets Tracking
    Jin, Mengjun
    Hong, Shaohua
    Shi, Zhiguo
    Chen, Kangsheng
    2009 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP 2009), 2009, : 761 - 765
  • [22] Probability hypothesis density filter with adaptive parameter estimation for tracking multiple maneuvering targets
    Yang Jinlong
    Yang Le
    Yuan Yunhao
    Ge Hongwei
    Chinese Journal of Aeronautics , 2016, (06) : 1740 - 1748
  • [23] A Sector-Matching Probability Hypothesis Density Filter for Radar Multiple Target Tracking
    Yang, Jialin
    Jiang, Defu
    Tao, Jin
    Gao, Yiyue
    Lu, Xingchen
    Han, Yan
    Liu, Ming
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [24] Constrained Multiple Model Probability Hypothesis Density Filter for Maneuvering Ground Target Tracking
    Yang, Feng
    Shi, Xi
    Liang, Yan
    Wang, Yongqi
    Pan, Quan
    2013 CHINESE AUTOMATION CONGRESS (CAC), 2013, : 759 - 764
  • [25] Probability hypothesis density filter with adaptive parameter estimation for tracking multiple maneuvering targets
    Yang Jinlong
    Yang Le
    Yuan Yunhao
    Ge Hongwei
    Chinese Journal of Aeronautics, 2016, 29 (06) : 1740 - 1748
  • [26] Probability hypothesis density filter with adaptive parameter estimation for tracking multiple maneuvering targets
    Yang, Jinlong (yjlgedeng@163.com), 1740, Chinese Journal of Aeronautics (29):
  • [27] Probability hypothesis density filter with adaptive parameter estimation for tracking multiple maneuvering targets
    Yang Jinlong
    Yang Le
    Yuan Yunhao
    Ge Hongwei
    CHINESE JOURNAL OF AERONAUTICS, 2016, 29 (06) : 1740 - 1748
  • [28] Nonconcurrent multiple speakers tracking based on extended Kalman particle filter
    Zhong, Xionghu
    Hopgood, James R.
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 293 - 296
  • [29] Iterated Central Difference Kalman Filter based speaker tracking
    Hou, Dai-Wen
    Yin, Fu-Liang
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2008, 30 (07): : 1684 - 1689
  • [30] Multiple Model Cardinalized Probability Hypothesis Density Filter
    Georgescu, Ramona
    Willett, Peter
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2011, 2011, 8137