Hypergraph partitioning for sparse matrix-matrix multiplication

被引:2
|
作者
Ballard G. [1 ]
Druinsky A. [2 ]
Knight N. [3 ]
Schwartz O. [4 ]
机构
[1] Department of Computer Science, Wake Forest University, PO Box 7311, Winston-Salem, 27109, NC
[2] Computational Research Division, Lawrence Berkeley National Laboratory, MS 50F-1650, 1 Cyclotron Rd., Berkeley, 94720, CA
[3] Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, 10012, NY
[4] Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem
基金
以色列科学基金会;
关键词
Hypergraph partitioning; Sparse matrix-matrix multiplication;
D O I
10.1145/3015144
中图分类号
学科分类号
摘要
We propose a fine-grained hypergraph model for sparse matrix-matrix multiplication (SpGEMM), a key computational kernel in scientific computing and data analysis whose performance is often communication bound. This model correctly describes both the interprocessor communication volume along a critical path in a parallel computation and also the volume of data moving through the memory hierarchy in a sequential computation. We show that identifying a communication-optimal algorithm for particular input matrices is equivalent to solving a hypergraph partitioning problem. Our approach is nonzero structure dependent, meaning that we seek the best algorithm for the given input matrices. In addition to our three-dimensional fine-grained model, we also propose coarse-grained one-dimensional and two-dimensional models that correspond to simpler SpGEMM algorithms. We explore the relations between our models theoretically, and we study their performance experimentally in the context of three applications that use SpGEMM as a key computation. For each application, we find that at least one coarse-grained model is as communication efficient as the fine-grained model. We also observe that different applications have affinities for different algorithms. Our results demonstrate that hypergraphs are an accurate model for reasoning about the communication costs of SpGEMM as well as a practical tool for exploring the SpGEMM algorithm design space. © 2016 ACM.
引用
收藏
页码:1 / 34
页数:33
相关论文
共 50 条
  • [31] Communication-Avoiding Parallel Sparse-Dense Matrix-Matrix Multiplication
    Koanantakool, Penporn
    Azad, Ariful
    Buluc, Aydin
    Morozov, Dmitriy
    Oh, Sang-Yun
    Oliker, Leonid
    Yelick, Katherine
    2016 IEEE 30TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2016), 2016, : 842 - 853
  • [32] Register-based Implementation of the Sparse General Matrix-Matrix Multiplication on GPUs
    Liu, Junhong
    He, Xin
    Liu, Weifeng
    Tan, Guangming
    ACM SIGPLAN NOTICES, 2018, 53 (01) : 407 - 408
  • [33] Exploiting Locality in Sparse Matrix-Matrix Multiplication on Many-Core Architectures
    Akbudak, Kadir
    Aykanat, Cevdet
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2017, 28 (08) : 2258 - 2271
  • [34] TileSpGEMM: A Tiled Algorithm for Parallel Sparse General Matrix-Matrix Multiplication on GPUs
    Niu, Yuyao
    Lu, Zhengyang
    Ji, Haonan
    Song, Shuhui
    Jin, Zhou
    Liu, Weifeng
    PPOPP'22: PROCEEDINGS OF THE 27TH ACM SIGPLAN SYMPOSIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMING, 2022, : 90 - 106
  • [35] GPU-ACCELERATED SPARSE MATRIX-MATRIX MULTIPLICATION BY ITERATIVE ROW MERGING
    Gremse, Felix
    Hoefter, Andreas
    Schwen, Lars Ole
    Kiessling, Fabian
    Naumann, Uwe
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01): : C54 - C71
  • [36] spECK: Accelerating GPU Sparse Matrix-Matrix Multiplication through Lightweight Analysis
    Parger, Mathias
    Winter, Martin
    Mlakar, Daniel
    Steinberger, Markus
    PROCEEDINGS OF THE 25TH ACM SIGPLAN SYMPOSIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMING (PPOPP '20), 2020, : 362 - 375
  • [37] Matrix-matrix multiplication on heterogeneous platforms
    Beaumont, O
    Boudet, V
    Rastello, F
    Robert, Y
    2000 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, PROCEEDINGS, 2000, : 289 - 298
  • [38] Efficient Sparse-Dense Matrix-Matrix Multiplication on GPUs Using the Customized Sparse Storage Format
    Shi, Shaohuai
    Wang, Qiang
    Chu, Xiaowen
    2020 IEEE 26TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2020, : 19 - 26
  • [39] Implementing Sparse Matrix Ordering Using Hypergraph Partitioning
    Yao Lu
    Yang Yi
    Wang Zhenghua
    Cao Wei
    MECHATRONICS AND INTELLIGENT MATERIALS III, PTS 1-3, 2013, 706-708 : 1890 - +
  • [40] An Efficient Gustavson-Based Sparse Matrix-Matrix Multiplication Accelerator on Embedded FPGAs
    Li, Shiqing
    Huai, Shuo
    Liu, Weichen
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023, 42 (12) : 4671 - 4680