Oxygen vacancy-dependent low-temperature performance of Ni/CeO2 in CO2 methanation

被引:4
|
作者
Liao, Luliang [2 ]
Wang, Kunlei [1 ]
Liao, Guangfu [3 ]
Nawaz, Muhammad Asif [4 ]
Liu, Kun [1 ]
机构
[1] Nanchang Univ, Sch Resources & Environm, 999 Xuefu Rd, Nanchang 330031, Jiangxi, Peoples R China
[2] Jiangxi Sci Technol Normal Univ, Nanchang, Jiangxi, Peoples R China
[3] Fujian Agr & Forestry Univ, Coll Mat Engn, Fuzhou 350002, Peoples R China
[4] Univ Seville, Inst Seville ICMSE, CSIC, Dept Inorgan Chem & Mat Sci, Seville 41092, Spain
基金
中国国家自然科学基金;
关键词
X-RAY-DIFFRACTION; CARBON-DIOXIDE; HETEROGENEOUS CATALYSTS; LATTICE CAPACITY; SOLID-SOLUTION; METAL-OXIDE; HYDROGENATION; METHANOL; CERIA; ACTIVATION;
D O I
10.1039/d4cy00679h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The transformative power of CO2 methanation can efficiently transform greenhouse gases into high-value products, aligning with the carbon neutrality goals. However, achieving this target at low temperature requires cumbersome efforts in designing catalysts that possess high reactivity and selectivity. Focusing on understanding the pivotal role of alkaline (such as Ca) sites in catalyzing these reactions at lower temperature could be a way of strategically creating oxygen vacancies with varying activity gradients. Designing CaCe-SG via a sol-gel method in the current study to integrate Ca into the CeO2 lattice marked the highly active moderate-strength alkaline centers which resulted in the intrinsic activity soaring by an impressive 400% compared to the conventional Ni/CeO2 catalysts. Supported by H-2-TPD, Raman, and XPS analyses, a crucial revelation was unveiled where Ca modification induced a surge in the dispersion of active Ni species on Ni/CaCe-SG catalysts, thereby enhancing the abundant surface oxygen vacancies. In situ infrared spectroscopy further confirmed that the modified catalyst diligently followed the reaction pathway of CO3H* -> HCOO* -> CH4, culminating in the CO2 methanation activity with a low-temperature catalyst via the meticulous optimization of synthesis methods that propelled the process forward to the anticipated oxygen vacancy-induced moderate-strength alkaline centers.
引用
收藏
页码:6537 / 6549
页数:13
相关论文
共 50 条
  • [21] Construction of the Low-Loading Ni/CeO2 Catalyst with a Boosted CO2 Methanation Performance via the Facile Pyrolysis CeO2 Support
    He, Yuan
    Shen, Haidong
    Bai, Yunhai
    Niu, Xin
    Zhao, Yike
    Wu, Chen
    Yang, Shaowei
    Cao, Yueling
    Zhang, Qiuyu
    Zhang, Hepeng
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (43) : 15948 - 15960
  • [22] Why Ni/CeO2 is more active than Ni/SiO2 for CO2 methanation? Identifying effect of Ni particle size and oxygen vacancy
    Liu, Jia
    Wu, Xiaoren
    Chen, Yaqi
    Zhang, Yang
    Zhang, Tengfei
    Ai, Hongmei
    Liu, Qing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (09) : 6089 - 6096
  • [23] Unveiling the promotion effect of ethylenediamine on preparation of Ni/CeO2 catalyst for low- temperature CO2 methanation
    Zhao, Ru
    Xie, Yu
    Li, Zonglin
    Weng, Huiling
    Zhu, Danrui
    Mao, Yufeng
    Wang, Huimin
    Zhang, Qiulin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 51 : 451 - 463
  • [24] Facilitating CO2 methanation over oxygen vacancy-rich Ni/CeO2: Insights into the synergistic effect between oxygen vacancy and metal-support interaction
    Yang, Wan
    Chang, Kaizhu
    Yang, Meng
    Yan, Xueshuang
    Yang, Shiju
    Liu, Yongjun
    Wang, Guowei
    Xia, Futing
    Wang, Huimin
    Zhang, Qiulin
    CHEMICAL ENGINEERING JOURNAL, 2024, 499
  • [25] Low-Temperature Dissociation of CO2 on a Ni/CeO2(111)/Ru(0001) Model Catalyst
    Kong, Dandan
    Zhu, Junfa
    Ernst, Karl-Heinz
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (11): : 5980 - 5987
  • [26] CO2 laser promoted oxygen vacancy-active oxygen cycle in DRM on Ni/ CeO2
    Liu, Hongchuan
    Dong, Meirong
    Xiong, Junchang
    Yang, Junshu
    Ning, Jingyun
    Liang, Youcai
    Lu, Jidong
    ENERGY CONVERSION AND MANAGEMENT, 2023, 286
  • [27] Reaction Mechanism and Catalytic Impact of Ni/CeO2-x Catalyst for Low-Temperature CO2 Methanation
    Lee, Sang Moon
    Lee, Ye Hwan
    Moon, Dea Hyun
    Ahn, Jeong Yoon
    Dinh Duc Nguyen
    Chang, Soon Woong
    Kim, Sung Su
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (20) : 8656 - 8662
  • [28] Catalytic performance of Ni/CeO2 catalysts prepared from different routes for CO2 methanation
    Ratchahat, Sakhon
    Surathitimethakul, Sethanat
    Thamungkit, Anyanee
    Mala, Phanatchakorn
    Sudoh, Masao
    Watanabe, Ryo
    Fukuhara, Choji
    Chen, Season S.
    Wu, Kevin C-W
    Charinpanitkul, Tawatchai
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2021, 121 (121) : 184 - 196
  • [29] Role of surface Ni and Ce species of Ni/CeO2 catalyst in CO2 methanation
    Zhou, Guilin
    Liu, Huiran
    Cui, Kaikai
    Jia, Aiping
    Hu, Gengshen
    Jiao, Zhaojie
    Liu, Yunqi
    Zhang, Xianming
    APPLIED SURFACE SCIENCE, 2016, 383 : 248 - 252
  • [30] What Are the Best Active Sites for CO2 Methanation over Ni/CeO2?
    Tada, Shohei
    Nagase, Hironori
    Fujiwara, Naoya
    Kikuchi, Ryuji
    ENERGY & FUELS, 2021, 35 (06) : 5241 - 5251