Oxygen vacancy-dependent low-temperature performance of Ni/CeO2 in CO2 methanation

被引:4
|
作者
Liao, Luliang [2 ]
Wang, Kunlei [1 ]
Liao, Guangfu [3 ]
Nawaz, Muhammad Asif [4 ]
Liu, Kun [1 ]
机构
[1] Nanchang Univ, Sch Resources & Environm, 999 Xuefu Rd, Nanchang 330031, Jiangxi, Peoples R China
[2] Jiangxi Sci Technol Normal Univ, Nanchang, Jiangxi, Peoples R China
[3] Fujian Agr & Forestry Univ, Coll Mat Engn, Fuzhou 350002, Peoples R China
[4] Univ Seville, Inst Seville ICMSE, CSIC, Dept Inorgan Chem & Mat Sci, Seville 41092, Spain
基金
中国国家自然科学基金;
关键词
X-RAY-DIFFRACTION; CARBON-DIOXIDE; HETEROGENEOUS CATALYSTS; LATTICE CAPACITY; SOLID-SOLUTION; METAL-OXIDE; HYDROGENATION; METHANOL; CERIA; ACTIVATION;
D O I
10.1039/d4cy00679h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The transformative power of CO2 methanation can efficiently transform greenhouse gases into high-value products, aligning with the carbon neutrality goals. However, achieving this target at low temperature requires cumbersome efforts in designing catalysts that possess high reactivity and selectivity. Focusing on understanding the pivotal role of alkaline (such as Ca) sites in catalyzing these reactions at lower temperature could be a way of strategically creating oxygen vacancies with varying activity gradients. Designing CaCe-SG via a sol-gel method in the current study to integrate Ca into the CeO2 lattice marked the highly active moderate-strength alkaline centers which resulted in the intrinsic activity soaring by an impressive 400% compared to the conventional Ni/CeO2 catalysts. Supported by H-2-TPD, Raman, and XPS analyses, a crucial revelation was unveiled where Ca modification induced a surge in the dispersion of active Ni species on Ni/CaCe-SG catalysts, thereby enhancing the abundant surface oxygen vacancies. In situ infrared spectroscopy further confirmed that the modified catalyst diligently followed the reaction pathway of CO3H* -> HCOO* -> CH4, culminating in the CO2 methanation activity with a low-temperature catalyst via the meticulous optimization of synthesis methods that propelled the process forward to the anticipated oxygen vacancy-induced moderate-strength alkaline centers.
引用
收藏
页码:6537 / 6549
页数:13
相关论文
共 50 条
  • [1] Ni/CeO2 catalysts for low-temperature CO2 methanation: Identifying effect of support morphology and oxygen vacancy
    Zhang, Yang
    Zhang, Tengfei
    Wang, Fang
    Zhu, Quanhong
    Liu, Qing
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2021, 11 (06) : 1222 - 1233
  • [2] Molybdenum-doping promoted surface oxygen vacancy of CeO2 for enhanced low-temperature CO2 methanation over Ni-CeO2 catalysts
    Zou, Xuhui
    Liu, Jianqiao
    Li, Yuji
    Shen, Zhangfeng
    Zhu, Xujiang
    Xia, Qineng
    Cao, Yongyong
    Zhang, Siqiang
    Ge, Zhigang
    Cui, Lifeng
    Wang, Yangang
    APPLIED SURFACE SCIENCE, 2024, 661
  • [3] Catalytic performance of Ni catalysts supported on CeO2 with different morphologies for low-temperature CO2 methanation
    Jomjaree, Thapanee
    Sintuya, Paweennut
    Srifa, Atthapon
    Koo-amornpattana, Wanida
    Kiatphuengporn, Sirapassorn
    Assabumrungrat, Suttichai
    Sudoh, Masao
    Watanabe, Ryo
    Fukuhara, Choji
    Ratchahat, Sakhon
    CATALYSIS TODAY, 2021, 375 (375) : 234 - 244
  • [4] Enhanced Low-Temperature Activity of CO2 Methanation Over Ni/CeO2 Catalyst
    Yuan Ma
    Jiao Liu
    Mo Chu
    Junrong Yue
    Yanbin Cui
    Guangwen Xu
    Catalysis Letters, 2022, 152 : 872 - 882
  • [5] Enhanced Low-Temperature Activity of CO2 Methanation Over Ni/CeO2 Catalyst
    Ma, Yuan
    Liu, Jiao
    Chu, Mo
    Yue, Junrong
    Cui, Yanbin
    Xu, Guangwen
    CATALYSIS LETTERS, 2022, 152 (03) : 872 - 882
  • [6] Ni nanoparticles dispersed on oxygen vacancies-rich CeO2 nanoplates for enhanced low-temperature CO2 methanation performance
    Du, Yixiong
    Qin, Chuan
    Xu, Yanfei
    Xu, Di
    Bai, Jingyang
    Ma, Guangyuan
    Ding, Mingyue
    CHEMICAL ENGINEERING JOURNAL, 2021, 418
  • [7] Frustrated Lewis Pairs Boosting Low-Temperature CO2 Methanation Performance over Ni/CeO2 Nanocatalysts
    Xie, Yu
    Chen, Jianjun
    Wu, Xi
    Wen, Junjie
    Zhao, Ru
    Li, Zonglin
    Tian, Guocai
    Zhang, Qiulin
    Ning, Ping
    Hao, Jiming
    ACS CATALYSIS, 2022, 12 (17) : 10587 - 10602
  • [8] Ni/CeO2 catalyst with La and Zr additives for improved low-temperature CO2 methanation efficiency
    Kaisook, Pattanapon
    Athikaphan, Pakpoom
    Nijpanich, Supinya
    Minato, Taketoshi
    Neramittagapong, Sutasinee
    Neramittagapong, Arthit
    RESULTS IN ENGINEERING, 2025, 25
  • [9] Optimizing low-temperature CO2 methanation through frustrated Lewis pairs on Ni/CeO2 catalysts
    Chen, Xiaohan
    Ye, Runping
    Sun, Chunyan
    Jin, Chengkai
    Wang, Yuan
    Arandiyan, Hamidreza
    Lim, Kang Hui
    Song, Guoqiang
    Hu, Feiyang
    Li, Claudia
    Lu, Zhang-Hui
    Feng, Gang
    Zhang, Rongbin
    Kawi, Sibudjing
    CHEMICAL ENGINEERING JOURNAL, 2024, 484
  • [10] Formation of oxygen vacancies and its role by yttrium-promoted method of Ni/CeO2 for low-temperature CO2 methanation
    Lee, Ye Hwan
    Jeong, Hyeonsu
    Kim, Sung Su
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 119 : 309 - 316