Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration

被引:0
|
作者
机构
[1] Chen, Zongping
[2] Zhang, Wen
[3] Palma, Carlos-Andres
[4] 4,Lodi Rizzini, Alberto
[5] Liu, Bilu
[6] 6,Abbas, Ahmad
[7] 8,Richter, Nils
[8] 4,Martini, Leonardo
[9] Wang, Xiao-Ye
[10] 4,Cavani, Nicola
[11] Lu, Hao
[12] Mishra, Neeraj
[13] Coletti, Camilla
[14] Berger, Reinhard
[15] Klappenberger, Florian
[16] 8,Kläui, Mathias
[17] Candini, Andrea
[18] 4,Affronte, Marco
[19] Zhou, Chongwu
[20] 4,De Renzi, Valentina
[21] 4,Del Pennino, Umberto
[22] Barth, Johannes V.
[23] Räder, Hans Joachim
[24] Narita, Akimitsu
[25] Feng, Xinliang
[26] Müllen, Klaus
来源
Feng, Xinliang (xinliang.feng@tu-dresden.de) | 1600年 / American Chemical Society卷 / 138期
基金
欧洲研究理事会;
关键词
Ambient pressure chemical vapor depositions - Chemical vapor depositions (CVD) - Graphene nanoribbons (GNRs) - Insulating substrates - Microscopic characterization - Molecular building blocks - Nanoscale electronics - Semiconducting materials;
D O I
暂无
中图分类号
学科分类号
摘要
Graphene nanoribbons (GNRs), quasi-one-dimensional graphene strips, have shown great potential for nanoscale electronics, optoelectronics, and photonics. Atomically precise GNRs can be bottom-up synthesized by surface-assisted assembly of molecular building blocks under ultra-high-vacuum conditions. However, large-scale and efficient synthesis of such GNRs at low cost remains a significant challenge. Here we report an efficient bottom-up chemical vapor deposition (CVD) process for inexpensive and high-throughput growth of structurally defined GNRs with varying structures under ambient-pressure conditions. The high quality of our CVD-grown GNRs is validated by a combination of different spectroscopic and microscopic characterizations. Facile, large-area transfer of GNRs onto insulating substrates and subsequent device fabrication demonstrate their promising potential as semiconducting materials, exhibiting high current on/off ratios up to 6000 in field-effect transistor devices. This value is 3 orders of magnitude higher than values reported so far for other thin-film transistors of structurally defined GNRs. Notably, on-surface mass spectrometry analyses of polymer precursors provide unprecedented evidence for the chemical structures of the resulting GNRs, especially the heteroatom doping and heterojunctions. These results pave the way toward the scalable and controllable growth of GNRs for future applications. © 2016 American Chemical Society.
引用
收藏
相关论文
共 50 条
  • [31] Low Partial Pressure Chemical Vapor Deposition of Graphene on Copper
    Sun, Jie
    Lindvall, Niclas
    Cole, Matthew T.
    Angel, Koh T. T.
    Wang, Teng
    Teo, Kenneth B. K.
    Chua, Daniel H. C.
    Liu, Johan
    Yurgens, August
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2012, 11 (02) : 255 - 260
  • [32] Efficient growth of high-quality graphene films on Cu foils by ambient pressure chemical vapor deposition
    Gao, Libo
    Ren, Wencai
    Zhao, Jinping
    Ma, Lai-Peng
    Chen, Zongping
    Cheng, Hui-Ming
    APPLIED PHYSICS LETTERS, 2010, 97 (18)
  • [33] Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure
    Jang, Jisu
    Son, Myungwoo
    Chung, Sunki
    Kim, Kihyeun
    Cho, Chunhum
    Lee, Byoung Hun
    Ham, Moon-Ho
    SCIENTIFIC REPORTS, 2015, 5
  • [34] Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure
    Jisu Jang
    Myungwoo Son
    Sunki Chung
    Kihyeun Kim
    Chunhum Cho
    Byoung Hun Lee
    Moon-Ho Ham
    Scientific Reports, 5
  • [35] Chemical Vapor Deposition Synthesis and Terahertz Photoconductivity of Low-Band-Gap N=9 Armchair Graphene Nanoribbons
    Chen, Zongping
    Wang, Hai I.
    Teyssandier, Joan
    Mali, Kunal S.
    Dumslaff, Tim
    Ivanov, Ivan
    Zhang, Wen
    Ruffieux, Pascal
    Fasel, Roman
    Raeder, Hans Joachim
    Turchinovich, Dmitry
    De Feyter, Steven
    Feng, Xinliang
    Klaeui, Mathias
    Narita, Akimitsu
    Bonn, Mischa
    Muellen, Klaus
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (10) : 3635 - 3638
  • [36] Ambient-Pressure Synthesis of Highly Crystallized Zeolite NaA
    Jiang, Yujia
    Qi, Haochen
    Wang, Jiayuan
    Sun, Xu
    Lyu, Changjiang
    Lu, Peng
    Yang, Ruiqin
    Noreen, Aqsa
    Xing, Chuang
    Tsubaki, Noritatsu
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (04) : 1725 - 1732
  • [37] SYNTHESIS OF GRAPHENE BY CHEMICAL VAPOR DEPOSITION AND ITS TRANSFER TO POLYMER
    D. V. Smovzh
    I. A. Kostogrud
    E. V. Boyko
    P. E. Matochkin
    I. A. Bezrukov
    A. S. Krivenko
    Journal of Applied Mechanics and Technical Physics, 2020, 61 : 888 - 897
  • [38] Synthesis of graphene ribbons using selective chemical vapor deposition
    An, Hyosub
    Lee, Wan-Gyu
    Jung, Jongwan
    CURRENT APPLIED PHYSICS, 2012, 12 (04) : 1113 - 1117
  • [39] Direct Synthesis of Graphene Quantum Dots by Chemical Vapor Deposition
    Fan, Lili
    Zhu, Miao
    Lee, Xiao
    Zhang, Rujing
    Wang, Kunlin
    Wei, Jinquan
    Zhong, Minlin
    Wu, Dehai
    Zhu, Hongwei
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2013, 30 (09) : 764 - 769
  • [40] Synthesis of large area graphene films by chemical vapor deposition
    Kawamoto, Nicole N.
    Luo, Zhengtang
    Kaplan, Michael
    Johnson, Charlie
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241