Mapping winter wheat crop traits dynamic change and growth performance for variable rate application using Sentinel-1 and Sentinel-2

被引:0
|
作者
Goh, Bing-Bing [1 ]
Sattari, Sheida Z. [3 ]
Bleakley, Chris J. [2 ]
Holden, Nicholas M. [1 ]
机构
[1] School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland
[2] School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
[3] Origin Enterprises Digital Ltd, HQ Building 329F Wing Thompson Avenue, Harwell Campus, Didcot,OX11 0GD, United Kingdom
基金
爱尔兰科学基金会;
关键词
D O I
10.1016/j.geomat.2024.100018
中图分类号
学科分类号
摘要
Site specific crop management for variable rate application is extensively recognized as a method for distributing agricultural input unevenly across a field, tailored to the diverse requirement of different areas. From the previous study, this approach proven to reduce agricultural input expenses by 10 % without impacting yield and ensure environmental sustainability. This study presents a new approach to delineate management zones for precision agriculture using crop biophysical property variability assessment within winter wheat fields. A multivariate random forest framework was developed to estimate winter wheat's biophysical properties within fields from surface reflectance and backscatters of Sentinel-1 and Sentinel-2. Combining Sentinel-1 and Sentinel-2 data resulted in more precise estimation of the green area index (R²=0.98), aboveground dry biomass (R²=0.90), plant height (R²=0.94), and leaf nitrogen content (R²=0.78). Sentinel-2 alone was particularly effective in estimating shoot density (R²=0.94). These estimates were then used to create management zones for precision agriculture, classified based on agronomic performance benchmarks. The fuzzy c-mean clustering algorithm helped generate homogeneous management zones, considering the biophysical variations within fields.The ultimate goal is to integrate these biophysical property maps and management zones into crop management workflows. This integration will assist farmers in recognizing field variability and understanding its causes. Moreover, the spatial distribution of these zones supports variable rate application, guiding farmers towards more efficient, profitable, and sustainable crop management practices. © 2024 The Authors
引用
收藏
相关论文
共 50 条
  • [1] Crop Water Content of Winter Wheat Revealed with Sentinel-1 and Sentinel-2 Imagery
    Han, Dong
    Liu, Shuaibing
    Du, Ying
    Xie, Xinrui
    Fan, Lingling
    Lei, Lei
    Li, Zhenhong
    Yang, Hao
    Yang, Guijun
    SENSORS, 2019, 19 (18)
  • [2] Comparison of Sentinel-2 and ISARIA winter wheat mapping for variable rate application of nitrogen fertilizers
    Mezera, Jiri
    Lukas, Vojtech
    Elbl, Jakub
    Smutny, Vladimir
    MENDELNET 2019: PROCEEDINGS OF 26TH INTERNATIONAL PHD STUDENTS CONFERENCE, 2019, : 48 - 53
  • [3] Detecting Phenological Development of Winter Wheat and Winter Barley Using Time Series of Sentinel-1 and Sentinel-2
    Harfenmeister, Katharina
    Itzerott, Sibylle
    Weltzien, Cornelia
    Spengler, Daniel
    REMOTE SENSING, 2021, 13 (24)
  • [4] An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping
    Song, Xiao-Peng
    Huang, Wenli
    Hansen, Matthew C.
    Potapov, Peter
    SCIENCE OF REMOTE SENSING, 2021, 3
  • [5] Synergy of Sentinel-1 and Sentinel-2 Imagery for Early Seasonal Agricultural Crop Mapping
    Valero, Silvia
    Arnaud, Ludovic
    Planells, Milena
    Ceschia, Eric
    REMOTE SENSING, 2021, 13 (23)
  • [6] An Application of Sentinel-1, Sentinel-2, and GNSS Data for Landslide Susceptibility Mapping
    Ghorbanzadeh, Omid
    Didehban, Khalil
    Rasouli, Hamid
    Kamran, Khalil Valizadeh
    Feizizadeh, Bakhtiar
    Blaschke, Thomas
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (10)
  • [7] JOINTLY EXPLOITING SENTINEL-1 AND SENTINEL-2 FOR URBAN MAPPING
    Iannelli, Gianni Cristian
    Gamba, Paolo
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8209 - 8212
  • [8] Mangrove forests mapping using Sentinel-1 and Sentinel-2 satellite images
    Alireza Sharifi
    Shilan Felegari
    Aqil Tariq
    Arabian Journal of Geosciences, 2022, 15 (20)
  • [9] Mountain crop monitoring with multitemporal Sentinel-1 and Sentinel-2 imagery
    Notarnicola, C.
    Asam, S.
    Jacob, A.
    Marin, C.
    Rossi, M.
    Stendardi, L.
    2017 9TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2017,
  • [10] CROP-IDENTIFICATION USING SENTINEL-1 AND SENTINEL-2 DATA FOR INDIAN REGION
    Singh, Jitendra
    Devi, Umamaheswari
    Hazra, Jagabondhu
    Kalyanaraman, Shivkumar
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5312 - 5314