Multicore iron oxide nanoparticles for magnetic hyperthermia and combination therapy against cancer cells

被引:3
|
作者
Garcia-Soriano, David [1 ]
Milan-Rois, Paula [1 ]
Lafuente-Gomez, Nuria [1 ]
Rodriguez-Diaz, Ciro [1 ]
Navio, Cristina [1 ]
Somoza, Alvaro [1 ,2 ,3 ]
Salas, Gorka [1 ,2 ,3 ,4 ]
机构
[1] Inst Madrileno Estudios Avanzados Nanociencia, Campus Univ Cantoblanco, Madrid 28049, Spain
[2] Unidad Asociada Nanobiotecnol CNB CSIC, Madrid 28049, Spain
[3] IMDEA Nanociencia, Madrid 28049, Spain
[4] CSIC, Unidad Nanomat Avanzados, Inst Ciencia Mat Madrid, IMDEA Nanociencia Unidad I D I Asociada, Madrid 28049, Spain
关键词
Magnetic nanoparticles; Nanoflowers; Hyperthermia; microRNA; Combination therapy; Cancer cells; SIZE-CONTROLLED SYNTHESIS; DRUG-DELIVERY; NANOFLOWERS; EFFICIENCY; MRI; MONODISPERSE; TOXICITY; MONOCORE; EFFICACY; SYSTEM;
D O I
10.1016/j.jcis.2024.05.046
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hypothesis: Multicore flower-like iron oxide nanoparticles (IONPs) are among the best candidates for magnetic hyperthermia applications against cancers. However, they are rarely investigated in physiological environments and their efficacy against cancer cells has been even less studied. The combination of magnetic hyperthermia, using multicore IONPs, with selected bioactive molecules should lead to an enhanced activity against cancer cells. Experiments: Multicore IONPs were synthesized by a seeded-growth thermal decomposition approach. Then, the cytotoxicity, cell uptake, and efficacy of the magnetic hyperthermia approach were studied with six cancer cell lines: PANC1 (pancreatic carcinoma), Mel202 (uveal melanoma), MCF7 (breast adenocarcinoma), MB231 (triple- negative breast cancer line), A549 (lung cancer), and HCT116 (colon cancer). Finally, IONPs were modified with a chemotherapeutic drug (SN38) and tumor suppressor microRNAs (miR-34a, miR-182, let-7b, and miR-137), to study their activity against cancer cells with and without combination with magnetic hyperthermia. Findings: Two types of multicore IONPs with very good heating abilities under magnetic stimulation have been prepared. Their concentration-dependent cytotoxicity and internalization have been established, showing a strong dependence on the cell line and the nanoparticle type. Magnetic hyperthermia causes significant cell death that is dramatically enhanced in combination with the bioactive molecules.
引用
收藏
页码:73 / 85
页数:13
相关论文
共 50 条
  • [31] Structure-Property-Function Relationships of Iron Oxide Multicore Nanoflowers in Magnetic Hyperthermia and Photothermia
    Bertuit, Enzo
    Benassai, Emilia
    Meriguet, Guillaume
    Greneche, Jean-Marc
    Baptiste, Benoit
    Neveu, Sophie
    Wilhelm, Claire
    Abou-Hassan, Ali
    ACS NANO, 2022, 16 (01) : 271 - 284
  • [32] Influence of clustering on the magnetic properties and hyperthermia performance of iron oxide nanoparticles
    Bender, P.
    Fock, J.
    Hansen, M. F.
    Bogart, K.
    Southern, P.
    Ludwig, F.
    Wiekhorst, F.
    Szczerba, W.
    Zeng, L. J.
    Heinke, D.
    Gehrke, N.
    Diaz, M. T. Fernandez
    Gonzalez-Alonso, D.
    Espeso, J., I
    Rodriguez Fernandez, J.
    Johansson, C.
    NANOTECHNOLOGY, 2018, 29 (42)
  • [33] Yttrium-Doped Iron Oxide Nanoparticles for Magnetic Hyperthermia Applications
    Kowalik, Przemyslaw
    Mikulski, Jakub
    Borodziuk, Anna
    Duda, Magdalena
    Kaminska, Izabela
    Zajdel, Karolina
    Rybusinski, Jaroslaw
    Szczytko, Jacek
    Wojciechowski, Tomasz
    Sobczak, Kamil
    Minikayev, Roman
    Kulpa-Greszta, Magdalena
    Pazik, Robert
    Grzaczkowska, Paulina
    Fronc, Krzysztof
    Lapinski, Mariusz
    Frontczak-Baniewicz, Malgorzata
    Sikora, Bozena
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (12): : 6871 - 6883
  • [34] The influence of magnetic and physiological behaviour on the effectiveness of iron oxide nanoparticles for hyperthermia
    Dennis, C. L.
    Jackson, A. J.
    Borchers, J. A.
    Ivkov, R.
    Foreman, A. R.
    Hoopes, P. J.
    Strawbridge, R.
    Pierce, Z.
    Goerntiz, E.
    Lau, J. W.
    Gruettner, C.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (13)
  • [35] Iron Oxide Based Nanoparticles for Magnetic Hyperthermia Strategies in Biological Applications
    Pineiro, Yolanda
    Vargas, Zulema
    Rivas, Jose
    Arturo Lopez-Quintela, Manuel
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2015, (27) : 4495 - 4509
  • [36] Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia
    Blanco-Andujar, Cristina
    Walter, Aurelie
    Cotin, Geoffrey
    Bordeianu, Catalina
    Mertz, Damien
    Felder-Flesch, Delphine
    Begin-Colin, Sylvie
    NANOMEDICINE, 2016, 11 (14) : 1889 - 1910
  • [37] Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia
    Drake, Philip
    Cho, Hui-Ju
    Shih, Pei-Shin
    Kao, Chao-Hung
    Lee, Kun-Feng
    Kuo, Chien-Hung
    Lin, Xi-Zhang
    Lin, Yuh-Jiuan
    JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (46) : 4914 - 4918
  • [38] Encapsulation of superparamagnetic iron oxide nanoparticles with polyaspartamide biopolymer for hyperthermia therapy
    Minh Phuong Nguyen
    Minh Hoang Nguyen
    Kim, Jaeyun
    Kim, Dukjoon
    EUROPEAN POLYMER JOURNAL, 2020, 122
  • [39] In Situ Biosynthesized Superparamagnetic Iron Oxide Nanoparticles (SPIONS) Induce Efficient Hyperthermia in Cancer Cells
    Kaushik, Swati
    Thomas, Jijo
    Panwar, Vineeta
    Ali, Hasan
    Chopra, Vianni
    Sharma, Anjana
    Tomar, Ruchi
    Ghosh, Deepa
    ACS APPLIED BIO MATERIALS, 2020, 3 (02) : 779 - 788
  • [40] Synergistic effects of paclitaxel and platelet-superparamagnetic iron oxide nanoparticles for targeted chemo-hyperthermia therapy against breast cancer
    Tavakoli, Mohamadreza
    Maghsoudian, Samane
    Rezaei-Aderiani, Amir
    Hajiramezanali, Maliheh
    Fatahi, Yousef
    Amani, Mahdiyar
    Sharifikolouei, Elham
    Ghahremani, Mohammad Hossein
    Raoufi, Mohammad
    Motasadizadeh, Hamidreza
    Dinarvand, Rassoul
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2025, 251