Unsupervised hyperspectral band selection based on spectral rhythm analysis

被引:0
|
作者
20144300126344
机构
来源
(1) Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; (2) Instituto de Ciências Exatas e Informática, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil | / CAPES; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ)卷 / IEEE Computer Society期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
107421
引用
收藏
相关论文
共 50 条
  • [31] Unsupervised spectral mapping and feature selection for hyperspectral anomaly detection
    Xie, Weiying
    Li, Yunsong
    Lei, Jie
    Yang, Jian
    Li, Jiaojiao
    Jia, Xiuping
    Li, Zhen
    [J]. NEURAL NETWORKS, 2020, 132 : 144 - 154
  • [32] Unsupervised Hyperspectral Band Selection Using Graphics Processing Units
    Yang, He
    Du, Qian
    Chen, Genshe
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2011, 4 (03) : 660 - 668
  • [33] ANT COLONY OPTIMIZATION FOR SUPERVISED AND UNSUPERVISED HYPERSPECTRAL BAND SELECTION
    Gao, Jianwei
    Du, Qian
    Gao, Lianru
    Sun, Xu
    Wu, Yuanfeng
    Zhang, Bing
    [J]. 2013 5TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2013,
  • [34] Unsupervised Cluster-Wise Hyperspectral Band Selection for Classification
    Habermann, Mateus
    Shiguemori, Elcio Hideiti
    Fremont, Vincent
    [J]. REMOTE SENSING, 2022, 14 (21)
  • [35] 1 Unsupervised hyperspectral band selection with deep autoencoder unmixing
    Elkholy, Menna M.
    Mostafa, Marwa S.
    Ebeid, Hala M.
    Tolba, Mohamed
    [J]. INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2022, 13 (03) : 244 - 261
  • [36] Unsupervised hyperspectral band selection for apple Marssonina blotch detection
    Shuaibu, Mubarakat
    Lee, Won Suk
    Schueller, John
    Gader, Paul
    Hong, Young Ki
    Kim, Sangcheol
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 148 : 45 - 53
  • [37] Unsupervised feature extraction and band subset selection techniques based on relative entropy criteria for hyperspectral data analysis
    Arzuaga-Cruz, E
    Jimenez-Rodriguez, LO
    Vélez-Reyes, M
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL AND ULTRASPECTRAL IMAGERY IX, 2003, 5093 : 462 - 473
  • [38] Unsupervised band selection based on artificial bee colony algorithm for hyperspectral image classification
    Xie, Fuding
    Li, Fangfei
    Lei, Cunkuan
    Yang, Jun
    Zhang, Yong
    [J]. APPLIED SOFT COMPUTING, 2019, 75 : 428 - 440
  • [39] Unsupervised Hyperspectral Band Selection Based on Maximum Information Entropy and Determinantal Point Process
    Yang, Zhijing
    Chen, Weizhao
    Yan, Yijun
    Cao, Faxian
    Cai, Nian
    [J]. ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 352 - 361
  • [40] Unsupervised hyperspectral band selection using ranking based on a denoising error matching approach
    Varade, Divyesh
    Maurya, Ajay K.
    Dikshit, Onkar
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (20) : 8031 - 8053