Development of materials for all-solid-state lithium batteries

被引:0
|
作者
机构
[1] Machida, Nobuya
来源
Machida, N. | 2005年 / Funtai Funamtsu Yakin Kyokai/Japan Soc. of Powder Metallurgy卷 / 52期
关键词
Ball milling - Electrodes - Electrolytes - Lithium batteries;
D O I
10.2497/jjspm.52.589
中图分类号
学科分类号
摘要
Development of all-solid-state lithium batteries is strongly desired to replace commercially available lithiumion batteries using conventional electrolyte solutions, because the all-solid- state batteries have some advantages, such as high reliability and high safety performance. For the development of the all-solid-state lithium batteries, non-flammable lithium-ion conducting solid electrolytes and also positive and negative electrode materials suitable for the all-solid-state batteries are indispensable materials. Phosphorus-sulfide based lithium-ion conducting materials have been prepared by a high-energy ball-milling process. The solid electrolytes in the system Li 2S-P2S3P2S5 show high lithium-ion conductivity over 6 × 10-4 Scm-1 at room temperature and have been prominent electrochemical stability. New Li-Si alloy has been also prepared by the high-energy ball-milling process and investigated as negative electrode materials for the all-solid-state batteries. The new alloy shows large specific capacity about 300 mAhg-1 and good charge-discharge reversibility.
引用
收藏
相关论文
共 50 条
  • [41] Polythiocyanogen as Cathode Materials for High Temperature All-Solid-State Lithium-Sulfur Batteries
    Wang, Shen
    Zhou, Jianbin
    Feng, Shijie
    Patel, Maansi
    Lu, Bingyu
    Li, Weikang
    Soulen, Charles
    Feng, Jiaqi
    Meng, Ying Shirley
    Liu, Ping
    ACS ENERGY LETTERS, 2023, 8 (06) : 2699 - 2706
  • [42] Achieving high kinetics anode materials for all-solid-state lithium-ion batteries
    Zheng, Yuxin
    Liu, Shuo
    Zheng, Junnan
    Kang, Guojian
    Li, Yafeng
    Yang, Siman
    Wang, Jianbiao
    Yang, Ting
    Wei, Mingdeng
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [43] Lithium silicon sulfide as an anode material in all-solid-state lithium batteries
    Hang, Bui Thi
    Ohnishi, Tsuyoshi
    Osada, Minoru
    Xu, Xiaoxiong
    Takada, Kazunori
    Sasaki, Takayoshi
    JOURNAL OF POWER SOURCES, 2010, 195 (10) : 3323 - 3327
  • [44] Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries
    Li, Xiaona
    Liang, Jianwen
    Yang, Xiaofei
    Adair, Keegan R.
    Wang, Changhong
    Zhao, Feipeng
    Sun, Xueliang
    ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (05) : 1429 - 1461
  • [45] Status and Prospect of Two-Dimensional Materials in Electrolytes for All-Solid-State Lithium Batteries
    Lan, Xuexia
    Luo, Na
    Li, Zhen
    Peng, Jing
    Cheng, Hui-Ming
    ACS NANO, 2024, 18 (13) : 9285 - 9310
  • [46] Deeply Lithiated Carbonaceous Materials for Great Lithium Metal Protection in All-Solid-State Batteries
    Song, Libo
    Li, Ruhong
    Zhu, Haotian
    Li, Zhendong
    Liu, Gaozhan
    Peng, Zhe
    Fan, Xiulin
    Yao, Xiayin
    ADVANCED MATERIALS, 2024, 36 (26)
  • [47] Preparation of Lithium Sulfide-Based Cathode Materials and Application to All-Solid-State Batteries
    Matsuda A.
    Hikima K.
    Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2024, 71 (03): : 75 - 80
  • [48] Engineering Materials for Progressive All-Solid-State Na Batteries
    Zhou, Chengtian
    Bag, Sourav
    Thangadurai, Venkataraman
    ACS ENERGY LETTERS, 2018, 3 (09): : 2181 - 2198
  • [49] Review on solid electrolytes for all-solid-state lithium-ion batteries
    Zheng, Feng
    Kotobuki, Masashi
    Song, Shufeng
    Lai, Man On
    Lu, Li
    JOURNAL OF POWER SOURCES, 2018, 389 : 198 - 213
  • [50] Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries
    Lian, Peng-Jie
    Zhao, Bo-Sheng
    Zhang, Lian-Qi
    Xu, Ning
    Wu, Meng-Tao
    Gao, Xue-Ping
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (36) : 20540 - 20557