Lithiation Induced Hetero-Superlattice Zn/ZnLi as Stable Anode for Aqueous Zinc-Ion Batteries

被引:1
|
作者
Hu, Chao [1 ]
Yang, Zefang [1 ]
Zhang, Qi [1 ]
Zhang, Mingze [1 ]
Wu, Tingqing [1 ]
Xie, Chunlin [1 ]
Wang, Hao [1 ]
Tang, Yougen [1 ]
Wang, Haiyan [1 ]
机构
[1] Cent South Univ, Coll Chem & Chem Engn, Hunan Prov Key Lab Chem Power Sources, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Zn metal anode; Zincophilic ZnLi sites; Hetero-superlattice Zn/ZnLi; Uniform Zn nucleation; Zn dendrites; ELECTRODE MATERIALS;
D O I
10.1002/anie.202409096
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Three dimensional (3D) framework structure is one of the most effective ways to achieve uniform zinc deposition and thus inhibit the Zn dendrites growth in working Zn metallic anode. A major challenge facing for the most commonly used 3D zincophilic hosts is that the zincophilic layer tends to peel off during repeatedly cycling, making it less stable. Herein, for the first time, a hetero-superlattice Zn/ZnLi (HS-Zn/ZnLi) anode containing periodic arrangements of metallic Zn phase and zincophilic ZnLi phase at the nanoscale, is well designed and fabricated via electrochemical lithiation method. Based on binding energy and stripping energy calculation, and the operando optical observation of plating/stripping behaviors, the zincophilic ZnLi sites with a strong Zn adsorption ability in the interior of the 3D ZnLi framework structure can effectively guide uniform Zn nucleation and dendrite-free zinc deposition, which significantly improves the cycling stability of the HS-Zn/ZnLi alloy (over 2800 h without a short-circuit at 2 mA cm-2). More importantly, this strategy can be extended to HS-Zn/ZnNa and HS-Zn/ZnK anodes that are similar to the HS-Zn/ZnLi microstructure, also displaying significantly enhanced cycling performances in AZIBs. This study can provide a novel strategy to develop the dendrite-free metal anodes with stable cycling performance. A hetero-superlattice Zn/ZnLi anode containing periodic arrangements of metallic Zn phase and zincophilic ZnLi phase at the nanoscale, is well designed and fabricated via electrochemical lithiation method. The HS-Zn/ZnLi anode can effectively guide Zn ion stripping/deposition evenly during repeatedly stripping/plating processes. Consequently, the HS-Zn/ZnLi anode with hetero-superlattice structure can cycle over 2800 h without a short-circuit at 2 mA cm-2. image
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Chemical surface tuning of zinc metal anode toward stable, dendrite-less aqueous zinc-ion batteries
    Kulkarni, Pranav
    Kim, Sun-Sik
    Jung, Hyun Young
    JOURNAL OF ENERGY CHEMISTRY, 2023, 86 : 1 - 8
  • [42] Understanding and Performance of the Zinc Anode Cycling in Aqueous Zinc-Ion Batteries and a Roadmap for the Future
    Shang, Yuan
    Kundu, Dipan
    BATTERIES & SUPERCAPS, 2022, 5 (05)
  • [43] Electroplating of zinc onto polyelectrolyte complex membranes as anode for aqueous zinc-ion batteries
    Arif, Muhammad Bagus
    Dubas, Stephan Thierry
    MATERIALS LETTERS, 2024, 376
  • [44] Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc-ion Batteries
    Canpeng Li
    Xuesong Xie
    Shuquan Liang
    Jiang Zhou
    Energy & Environmental Materials , 2020, (02) : 146 - 159
  • [45] Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc-ion Batteries
    Li, Canpeng
    Xie, Xuesong
    Liang, Shuquan
    Zhou, Jiang
    ENERGY & ENVIRONMENTAL MATERIALS, 2020, 3 (02) : 146 - 159
  • [46] Challenges and protective strategies on zinc anode toward practical aqueous zinc-ion batteries
    Al-Abbasi, Malek
    Zhao, Yanrui
    He, Honggang
    Liu, Hui
    Xia, Huarong
    Zhu, Tianxue
    Wang, Kexuan
    Xu, Zhu
    Wang, Huibo
    Zhang, Wei
    Lai, Yuekun
    Ge, Mingzheng
    CARBON NEUTRALIZATION, 2024, 3 (01): : 108 - 141
  • [47] Issues and solutions toward zinc anode in aqueous zinc-ion batteries: A mini review
    Xie, Chunlin
    Li, Yihu
    Wang, Qi
    Sun, Dan
    Tang, Yougen
    Wang, Haiyan
    CARBON ENERGY, 2020, 2 (04) : 540 - 560
  • [48] Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc-ion Batteries
    Canpeng Li
    Xuesong Xie
    Shuquan Liang
    Jiang Zhou
    Energy & Environmental Materials, 2020, 3 (02) : 146 - 159
  • [49] Stabilizing Zn Anodes with Interfacial Engineering for Aqueous Zinc-ion Batteries
    Lu, Wen
    Shao, Yingbo
    Yan, Ruiqiang
    Zhong, Yijun
    Ning, Jiqiang
    Hu, Yong
    BATTERIES & SUPERCAPS, 2024, 7 (02)
  • [50] Recent Progress on Zn Anodes for Advanced Aqueous Zinc-Ion Batteries
    Nie, Chuanhao
    Wang, Gulian
    Wang, Dongdong
    Wang, Mingyue
    Gao, Xinran
    Bai, Zhongchao
    Wang, Nana
    Yang, Jian
    Xing, Zheng
    Dou, Shixue
    ADVANCED ENERGY MATERIALS, 2023, 13 (28)