A compact difference scheme for one-dimensional nonlinear delay reaction-diffusion equations with variable coefficient

被引:0
|
作者
Xie, Jianqiang [1 ]
Deng, Dingwen [1 ]
Zheng, Huasheng [1 ]
机构
[1] College of Mathematics and Information Science, Nanchang Hangkong University, Nanchang,330063, China
来源
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Diffusion in liquids - Nonlinear equations - Partial differential equations
引用
收藏
页码:14 / 19
相关论文
共 50 条
  • [21] Simultaneous inversion of coefficient and source term of a one-dimensional reaction-diffusion equation
    Zhao Z.-X.
    Guo B.-Z.
    Han Z.-J.
    [J]. Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2022, 39 (09): : 1601 - 1608
  • [22] A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction-diffusion equations
    Cheng, Xiujun
    Duan, Jinqiao
    Li, Dongfang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 346 : 452 - 464
  • [23] Finite difference reaction-diffusion equations with nonlinear diffusion coefficients
    Wang, JH
    Pao, CV
    [J]. NUMERISCHE MATHEMATIK, 2000, 85 (03) : 485 - 502
  • [24] A two-level linearized compact ADI scheme for two-dimensional nonlinear reaction-diffusion equations
    Wu, Fengyan
    Cheng, Xiujun
    Li, Dongfang
    Duan, Jinqiao
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (08) : 2835 - 2850
  • [25] Linearized compact difference schemes applied to nonlinear variable coefficient parabolic equations with distributed delay
    Tan, Zengqiang
    Yan, Xiaoqiang
    Qian, Xu
    Song, Songhe
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (03) : 2307 - 2326
  • [26] GROUP CLASSIFICATION OF VARIABLE COEFFICIENT QUASILINEAR REACTION-DIFFUSION EQUATIONS
    Vaneeva, Olena
    Zhalij, Alexander
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2013, 94 (108): : 81 - 90
  • [27] Stable schemes for partial differential equations: the one-dimensional reaction-diffusion equation
    Teixeira, J
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2004, 64 (05) : 507 - 520
  • [28] EFFECTS OF BOUNDARIES ON ONE-DIMENSIONAL REACTION-DIFFUSION EQUATIONS NEAR THRESHOLD.
    Hohenberg, P.C.
    Kramer, Lorenz
    Riecke, Hermann
    [J]. Physica D: Nonlinear Phenomena, 1985, 15 D (03) : 402 - 420
  • [29] A quasi-random walk method for one-dimensional reaction-diffusion equations
    Ogawa, S
    Lécot, C
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 62 (3-6) : 487 - 494
  • [30] Critical travelling waves for general heterogeneous one-dimensional reaction-diffusion equations
    Nadin, Gregoire
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (04): : 841 - 873