Simultaneous energy and mass calibration of large-radius jets with the ATLAS detector using a deep neural network

被引:31
|
作者
Aad, G. [157 ]
Aakvaag, E. [19 ]
Abbott, B. [178 ]
Abeling, K. [81 ]
Abicht, N. J. [74 ]
Abidi, S. H. [45 ]
Aboulhorma, A. [58 ,243 ]
Abramowicz, H. [222 ]
Abreu, H. [221 ]
Abulaiti, Y. [175 ]
Acharya, B. S. [105 ,106 ,256 ]
Bourdarios, C. Adam [4 ]
Adamczyk, L. [136 ]
Addepalli, S. V. [36 ]
Addison, M. J. [156 ]
Adelman, J. [172 ]
Adiguzel, A. [28 ]
Adye, T. [197 ]
Affolder, A. A. [199 ]
Afik, Y. [61 ]
Agaras, M. N. [12 ]
Agarwala, J. [114 ,115 ]
Aggarwal, A. [155 ]
Agheorghiesei, C. [39 ]
Ahmad, A. [60 ]
Ahmadov, F. [60 ,269 ]
Ahmed, W. S. [159 ]
Ahuja, S. [149 ]
Ai, X. [95 ]
Aielli, G. [120 ,121 ]
Aikot, A. [236 ]
Tamlihat, M. Ait [58 ]
Aitbenchikh, B. [55 ]
Aizenberg, I. [242 ]
Akbiyik, M. [155 ]
Akesson, T. P. A. [152 ]
Akimov, A. V. [60 ]
Akiyama, D. [241 ]
Akolkar, N. N. [34 ]
Aktas, S. [26 ]
Al Khoury, K. [63 ]
Alberghi, G. L. [33 ]
Albert, J. [238 ]
Albicocco, P. [78 ,79 ]
Albouy, G. L. [87 ]
Alderweireldt, S. [77 ]
Alegria, Z. L. [179 ]
Aleksa, M. [60 ]
Aleksandrov, I. N. [60 ]
Alexa, C. [38 ]
机构
[1] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
[2] Univ Alberta, Dept Phys, Edmonton, AB, Canada
[3] Ankara Univ, Dept Phys, Ankara, Turkiye
[4] Univ Savoie Mont Blanc, LAPP, CNRS, IN2P3, Annecy, France
[5] Argonne Natl Lab, Div High Energy Phys, Argonne, IL USA
[6] Univ Arizona, Dept Phys, Tucson, AZ USA
[7] Univ Texas Arlington, Dept Phys, Arlington, TX USA
[8] Natl & Kapodistrian Univ Athens, Dept Phys, Athens, Greece
[9] Natl Tech Univ Athens, Dept Phys, Zografos, Greece
[10] Univ Texas Austin, Dept Phys, Austin, TX USA
[11] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan
[12] Barcelona Inst Sci & Technol, Inst Fis Altes Energies IFAE, Barcelona, Spain
[13] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China
[14] Tsinghua Univ, Dept Phys, Beijing, Peoples R China
[15] Nanjing Univ, Dept Phys, Nanjing, Peoples R China
[16] Sun Yat Sen Univ, Sch Sci, Shenzhen Campus, Shenzhen, Guangdong, Peoples R China
[17] Univ Chinese Acad Sci UCAS, Beijing, Peoples R China
[18] Univ Belgrade, Inst Phys, Belgrade, Serbia
[19] Univ Bergen, Dept Phys & Technol, Bergen, Norway
[20] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA USA
[21] Univ Calif Berkeley, Berkeley, CA USA
[22] Humboldt Univ, Inst Phys, Berlin, Germany
[23] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland
[24] Univ Bern, High Energy Phys Lab, Bern, Switzerland
[25] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England
[26] Bogazici Univ, Dept Phys, Istanbul, Turkiye
[27] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkiye
[28] Istanbul Univ, Dept Phys, Istanbul, Turkiye
[29] Univ Antonio Narino, Fac Ciencias, Bogota, Colombia
[30] Univ Antonio Narino, Ctr Invest, Bogota, Colombia
[31] Univ Nacl Colombia, Dept Fis, Bogota, Colombia
[32] Univ Bologna, Dipartimento Fis & Astron A Righi, Bologna, Italy
[33] INFN, Sez Bologna, Bologna, Italy
[34] Univ Bonn, Phys Inst, Bonn, Germany
[35] Boston Univ, Dept Phys, Boston, MA USA
[36] Brandeis Univ, Dept Phys, Waltham, MA USA
[37] Transilvania Univ Brasov, Brasov, Romania
[38] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania
[39] Alexandru Ioan Cuza Univ, Dept Phys, Iasi, Romania
[40] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania
[41] Natl Univ Sci & Technol Politech, Bucharest, Romania
[42] West Univ Timisoara, Timisoara, Romania
[43] Comenius Univ, Fac Math, Phys & Informat, Bratislava, Slovakia
[44] Slovak Acad Sci, Inst Expt Phys, Dept Subnuclear Phys, Kosice, Slovakia
[45] Brookhaven Natl Lab, Dept Phys, Upton, NY USA
[46] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Buenos Aires, DF, Argentina
[47] Consejo Nacl Invest Cient & Tecn, Inst Fis Buenos Aires IFIBA, Buenos Aires, DF, Argentina
[48] Calif State Univ, San Pablo, CA USA
[49] Univ Cambridge, Cavendish Lab, Cambridge, England
[50] Univ Cape Town, Dept Phys, Cape Town, South Africa
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2024年 / 5卷 / 03期
基金
日本学术振兴会; 中国国家自然科学基金; 欧洲研究理事会; 瑞典研究理事会; 加拿大自然科学与工程研究理事会; 巴西圣保罗研究基金会; 瑞士国家科学基金会;
关键词
ATLAS; detector; CERN jets; calibrations;
D O I
10.1088/2632-2153/ad611e
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The energy and mass measurements of jets are crucial tasks for the Large Hadron Collider experiments. This paper presents a new calibration method to simultaneously calibrate these quantities for large-radius jets measured with the ATLAS detector using a deep neural network (DNN). To address the specificities of the calibration problem, special loss functions and training procedures are employed, and a complex network architecture, which includes feature annotation and residual connection layers, is used. The DNN-based calibration is compared to the standard numerical approach in an extensive series of tests. The DNN approach is found to perform significantly better in almost all of the tests and over most of the relevant kinematic phase space. In particular, it consistently improves the energy and mass resolutions, with a 30% better energy resolution obtained for transverse momenta p(T) > 500 GeV.
引用
收藏
页数:37
相关论文
共 50 条
  • [41] Prediction of Residential Building Energy Efficiency Performance using Deep Neural Network
    Irfan, Muhammad
    Ramlie, Faizir
    Widianto
    Lestandy, Merinda
    Faruq, Amrul
    Irfan, Muhammad, 1600, International Association of Engineers (48): : 1 - 7
  • [42] DeepControl: Energy-Efficient Control of a Quadrotor using a Deep Neural Network
    Varshney, Pratyush
    Nagar, Gajendra
    Saha, Indranil
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 43 - 50
  • [43] Search for Low-Mass Dijet Resonances Using Trigger-Level Jets with the ATLAS Detector in pp Collisions at √s=13 TeV
    Aaboud, M.
    Aad, G.
    Abbott, B.
    Abdinov, O.
    Abeloos, B.
    Abidi, S. H.
    AbouZeid, O. S.
    Abraham, N. L.
    Abramowiez, H.
    Abreu, H.
    Abulaiti, Y.
    Acharya, B. S.
    Adachi, S.
    Adamczyk, L.
    Adelman, J.
    Adersberger, M.
    Adiguze, A.
    Adye, T.
    Affolder, A. A.
    Afik, Y.
    Agheorghiesei, C.
    Aguilar-Saavedra, J. A.
    Ahmadov, F.
    Aielli, G.
    Akatsuka, S.
    Akesson, T. P. A.
    Akilli, E.
    Akimov, A. V.
    Alberghi, G. L.
    Albert, J.
    Albicocco, P.
    Verzini, M. J. Alconada
    Alderweireldt, S.
    Aleksa, M.
    Aleksandrov, . N.
    Alexa, C.
    Alexander, G.
    Alexopoulos, T.
    Alhroob, M.
    Ali, B.
    Alimonti, G.
    Alison, J.
    Alkire, S. P.
    Allaire, C.
    Allbrooke, B. M. M.
    Allen, B. W.
    Allport, P. P.
    Aloisio, A.
    Alonso, A.
    Alonso, F.
    PHYSICAL REVIEW LETTERS, 2018, 121 (08)
  • [44] Performance of jet substructure techniques for large-R jets in proton-proton collisions at √s=7 TeV using the ATLAS detector
    Aad, G.
    Abajyan, T.
    Abbott, B.
    Abdallah, J.
    Khalek, S. Abdel
    Abdelalim, A. A.
    Abdinov, O.
    Aben, R.
    Abi, B.
    Abolins, M.
    AbouZeid, O. S.
    Abramowicz, H.
    Abreu, H.
    Abulaiti, Y.
    Acharya, B. S.
    Adamczyk, L.
    Adams, D. L.
    Addy, T. N.
    Adelman, J.
    Adomeit, S.
    Adye, T.
    Aefsky, S.
    Aguilar-Saavedra, J. A.
    Agustoni, M.
    Ahlen, S. P.
    Ahles, F.
    Ahmad, A.
    Ahsan, M.
    Aielli, G.
    Akesson, T. P. A.
    Akimoto, G.
    Akimov, A. V.
    Alam, M. A.
    Albert, J.
    Albrand, S.
    Aleksa, M.
    Aleksandrov, I. N.
    Alessandria, F.
    Alexa, C.
    Alexander, G.
    Alexandre, G.
    Alexopoulos, T.
    Alhroob, M.
    Aliev, M.
    Alimonti, G.
    Alison, J.
    Allbrooke, B. M. M.
    Allison, L. J.
    Allport, P. P.
    Allwood-Spiers, S. E.
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (09):
  • [45] Study of energy deposition patterns in hadron calorimeter for prompt and displaced jets using convolutional neural network
    Biplob Bhattacherjee
    Swagata Mukherjee
    Rhitaja Sengupta
    Journal of High Energy Physics, 2019
  • [46] Study of energy deposition patterns in hadron calorimeter for prompt and displaced jets using convolutional neural network
    Bhattacherjee, Biplob
    Mukherjee, Swagata
    Sengupta, Rhitaja
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (11)
  • [47] Measurement of detector-corrected observables sensitive to the anomalous production of events with jets and large missing transverse momentum in pp collisions at √s=13 TeV using the ATLAS detector
    Aaboud, M.
    Aad, G.
    Abbott, B.
    Abdallah, J.
    Abdinov, O.
    Abeloos, B.
    Abidi, S. H.
    AbouZeid, O. S.
    Abraham, N. L.
    Abramowicz, H.
    Abreu, H.
    Abreu, R.
    Abulaiti, Y.
    Acharya, B. S.
    Adachi, S.
    Adamczyk, L.
    Adelman, J.
    Adersberger, M.
    Adye, T.
    Affolder, A. A.
    Agatonovic-Jovin, T.
    Agheorghiesei, C.
    Aguilar-Saavedra, J. A.
    Ahlen, S. P.
    Ahmadov, F.
    Aielli, G.
    Akatsuka, S.
    Akerstedt, H.
    Akesson, T. P. A.
    Akilli, E.
    Akimov, A. V.
    Alberghi, G. L.
    Albert, J.
    Albicocco, P.
    Alconada Verzini, M. J.
    Aleksa, M.
    Aleksandrov, I. N.
    Alexa, C.
    Alexander, G.
    Alexopoulos, T.
    Alhroob, M.
    Ali, B.
    Aliev, M.
    Alimonti, G.
    Alison, J.
    Alkire, S. P.
    Allbrooke, B. M. M.
    Allen, B. W.
    Allport, P. P.
    Aloisio, A.
    EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (11):
  • [48] Simultaneous classification of several features of a person’s appearance using a deep convolutional neural network
    Kukharenko A.I.
    Konushin A.S.
    Pattern Recognition and Image Analysis, 2015, 25 (03) : 461 - 465
  • [49] Simultaneous Extraction of Road and Centerline from Aerial Images Using a Deep Convolutional Neural Network
    Alshaikhli, Tamara
    Liu, Wen
    Maruyama, Yoshihisa
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (03)
  • [50] A Model to Predict Mass Spectrum from Odor Impression using Deep Neural Network
    Hasebe, Daisuke
    Nakamoto, Takamichi
    2021 IEEE SENSORS, 2021,