Unbiased Feature Learning with Causal Intervention for Visible-Infrared Person Re-Identification

被引:0
|
作者
Yuan, Bo wen [1 ]
Lu, Jiahao [1 ]
You, Sisi [1 ]
Bao, Bing-kun [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Visible-infrared person re-identification; cross modality; causal inference; backdoor adjustment;
D O I
10.1145/3674737
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visible-infrared person re-identification (VI-ReID) aims to match individuals across different modalities. Existing methods can learn class-separable features but still struggle with modality gaps within class due to the modality-specific information, which is discriminative in one modality but not present in another (e.g., a black striped shirt). The presence of the interfering information creates a spurious correlation with the class label, which hinders alignment across modalities. To this end, we propose an Unbiased feature learning method based on Causal inTervention for VI-ReID from three aspects. Firstly, through the proposed structural causal graph, we demonstrate that modality-specific information acts as a confounder that restricts the intra-class feature alignment. Secondly, we propose a causal intervention method to remove the confounder using an effective approximation of backdoor adjustment, which involves adjusting the spurious correlation between features and labels. Thirdly, we incorporate the proposed approximation method into the basic VI-ReID model. Specifically, the confounder can be removed by adjusting the extracted features with a set of weighted pre-trained class prototypes from different modalities, where the weight is adapted based on the features. Extensive experiments on the SYSU-MM01 and RegDB datasets demonstrate that our method outperforms state-of-the-art methods. Code is available at https://github.com/NJUPT-MCC/UCT.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Visible-infrared person re-identification model based on feature consistency and modal indistinguishability
    Sun, Jia
    Li, Yanfeng
    Chen, Houjin
    Peng, Yahui
    Zhu, Jinlei
    MACHINE VISION AND APPLICATIONS, 2023, 34 (01)
  • [42] TWO-PHASE FEATURE FUSION NETWORK FOR VISIBLE-INFRARED PERSON RE-IDENTIFICATION
    Cheng, Yunzhou
    Xiao, Guoqiang
    Tang, Xiaoqin
    Ma, Wenzhuo
    Gou, Xinye
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1149 - 1153
  • [43] FMCNet: Feature-Level Modality Compensation for Visible-Infrared Person Re-Identification
    Zhang, Qiang
    Lai, Changzhou
    Liu, Jianan
    Huang, Nianchang
    Han, Jungong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 7339 - 7348
  • [44] Modality Unifying Network for Visible-Infrared Person Re-Identification
    Yu, Hao
    Cheng, Xu
    Peng, Wei
    Liu, Weihao
    Zhao, Guoying
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 11151 - 11161
  • [45] Revisiting Modality-Specific Feature Compensation for Visible-Infrared Person Re-Identification
    Liu, Jianan
    Wang, Jialiang
    Huang, Nianchang
    Zhang, Qiang
    Han, Jungong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 7226 - 7240
  • [46] Visible-infrared person re-identification model based on feature consistency and modal indistinguishability
    Jia Sun
    Yanfeng Li
    Houjin Chen
    Yahui Peng
    Jinlei Zhu
    Machine Vision and Applications, 2023, 34
  • [47] Progressive discrepancy elimination for visible-infrared person re-identification
    Zhang, Guoqing
    Wang, Zhun Zhun
    Wang, Hairui
    Zhou, Jieqiong
    Zheng, Yuhui
    NEUROCOMPUTING, 2024, 607
  • [48] High-Order Structure Based Middle-Feature Learning for Visible-Infrared Person Re-identification
    Qiu, Liuxiang
    Chen, Si
    Yan, Yan
    Xue, Jing-Hao
    Wang, Da-Han
    Zhu, Shunzhi
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 5, 2024, : 4596 - 4604
  • [49] Margin-Based Modal Adaptive Learning for Visible-Infrared Person Re-Identification
    Zhao, Qianqian
    Wu, Hanxiao
    Zhu, Jianqing
    SENSORS, 2023, 23 (03)
  • [50] Cross-Modality Semantic Consistency Learning for Visible-Infrared Person Re-Identification
    Liu, Min
    Zhang, Zhu
    Bian, Yuan
    Wang, Xueping
    Sun, Yeqing
    Zhang, Baida
    Wang, Yaonan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 568 - 580