Design of all-sky airglow imaging spectrometers in the middle and upper atmosphere

被引:2
|
作者
Li X. [1 ]
Li Y. [1 ]
Fu D. [1 ]
Feng Y. [1 ]
机构
[1] Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an
来源
Optik | 2023年 / 287卷
基金
中国国家自然科学基金;
关键词
Airglow imaging spectrometer; Design method; Fisheye lens; Gravity wave phenomenon;
D O I
10.1016/j.ijleo.2023.171087
中图分类号
学科分类号
摘要
In order to detect the distribution of gravity waves in the middle and upper atmosphere, an all-sky airglow imaging spectrometer is designed to measure the airglow. It has the detection advantages of ultrawide field of view (FOV), large relative aperture and high signal-to-noise ratio (SNR). It can obtain the spectral images of OH (715–850 nm / 880–930 nm) and OI (630 nm) in the height range of 87–250 km. The whole design method of telecentric objective splicing relay zoom group is used to effectively suppress the spectral drift less than 0.2 nm, which meets the requirements of narrow bandwidth filters. The field experiments in northwest China show that the all-sky airglow imaging spectrometer can continuously acquire airglow spectral images with high SNR in both OH channel and OI channel without focusing in the temperature range of 0–45 ℃, and the images obtained in OH channel have obvious gravity wave phenomenon after star point removal and geometric correction. © 2023 Elsevier GmbH
引用
收藏
相关论文
共 50 条
  • [41] Estimating drift velocity of polar cap patches with all-sky airglow imager at Resolute Bay, Canada
    Hosokawa, K.
    Shiokawa, K.
    Otsuka, Y.
    Nakajima, A.
    Ogawa, T.
    Kelly, J. D.
    GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (15)
  • [42] Small-scale gravity waves near the mesopause observed by four all-sky airglow imagers
    Ejiri, MK
    Shiokawa, K
    Ogawa, T
    Nakamura, T
    Maekawa, R
    Tsuda, T
    Kubota, M
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D19) : 22793 - 22799
  • [43] Motion of polar cap patches: A statistical study with all-sky airglow imager at Resolute Bay, Canada
    Hosokawa, K.
    Kashimoto, T.
    Suzuki, S.
    Shiokawa, K.
    Otsuka, Y.
    Ogawa, T.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2009, 114
  • [44] A case study of a mesospheric bore event observed with an all-sky airglow imager at Tirunelveli (8.7°N)
    Narayanan, V. Lakshmi
    Gurubaran, S.
    Emperumal, K.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
  • [45] A statistical analysis of equatorial plasma bubble structures based on an all-sky airglow imager network in China
    Sun, Longchang
    Xu, Jiyao
    Wang, Wenbin
    Yuan, Wei
    Li, Qinzeng
    Jiang, Chaowei
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (11) : 11495 - 11517
  • [46] AN ANALYSIS OF THE MIDDLE AND UPPER-ATMOSPHERE NIGHT AIRGLOW OSCILLATIONS PRECEDING THE EARTHQUAKES
    TOROSHELIDZE, TI
    FISHKOVA, LM
    DOKLADY AKADEMII NAUK SSSR, 1988, 302 (02): : 313 - 316
  • [47] All-sky upper limit for gravitational radiation from spinning neutron stars
    Astone, P
    Babusci, D
    Bassan, M
    Borkowski, KM
    Coccia, E
    D'Antonio, S
    Fafone, V
    Giordano, G
    Jaranowski, P
    Królak, A
    Marini, A
    Minenkov, Y
    Modena, I
    Modestino, G
    Moleti, A
    Pallottino, GV
    Pietka, M
    Pizzella, G
    Quintieri, L
    Rocchi, A
    Ronga, F
    Terenzi, R
    Visco, M
    CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (17) : S665 - S676
  • [48] CYCLIC IMAGING FOR ALL-SKY INTERFERENCE FORECASTING WITH ARRAY RADIO TELESCOPES
    Hellbourg, Gregory
    Morrison, Ian
    PROCEEDINGS OF 2019 COEXISTING WITH RADIO FREQUENCY INTERFERENCE (RFI 2019), 2019, : 62 - 66
  • [49] All-Sky synthesis imaging for optimum transient detection in Radio Astronomy
    Prasad, Peeyush
    Wijnholds, Stefan J.
    Wijers, R. A. M. J.
    2015 1st URSI Atlantic Radio Science Conference (URSI AT-RASC), 2015,
  • [50] Halo ratio from ground-based all-sky imaging
    Dandini, Paolo
    Ulanowski, Zbigniew
    Campbell, David
    Kaye, Richard
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2019, 12 (02) : 1295 - 1309