Thirring solitons in optical fibers with parabolic law nonlinearity

被引:0
|
作者
Savescu M. [1 ]
Alkhateeb S.A. [2 ]
Banaja M.A. [2 ]
Alshaery A.A. [2 ]
Hilal E.M. [2 ]
Milovic D. [3 ]
Biswas A. [4 ,5 ]
机构
[1] Department of Mathematics, Kuztown University of Pennsylvania, Kuztown, 19530, PA
[2] Department of Mathematics, Faculty of Science for Girls, King Abdulaziz University, Jeddah
[3] Faculty of Electronic Engineering, Department of Telecommunications, University of Nis, Aleksandra Medvedeva 14, Nis
[4] Department of Mathematical Sciences, Delaware State University, Dover, 19901-2277, DE
[5] Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah
关键词
Integrability; Parabolic Law; Solitons; Thirring;
D O I
10.1166/jctn.2016.5332
中图分类号
学科分类号
摘要
This paper obtains Thirring bright, dark and singular 1-soliton solutions for parabolic law nonlinearity in optical fibers. The model equation is integrated by the method of undetermined coefficients that is alternately known as ansatz method. There are constraint conditions that naturally emerge from the soliton solution structure. These integrability conditions guarantee the existence of these solitons. © 2016 American Scientific Publishers All rights reserved.
引用
收藏
页码:4656 / 4659
页数:3
相关论文
共 50 条
  • [41] Optical solitons to the Ginzburg–Landau equation including the parabolic nonlinearity
    K. Hosseini
    M. Mirzazadeh
    L. Akinyemi
    D. Baleanu
    S. Salahshour
    Optical and Quantum Electronics, 2022, 54
  • [42] Dispersive solitons in optical metamaterials having parabolic form of nonlinearity
    Hubert, Malwe Boudoue
    Nestor, Savaissou
    Douvagai
    Betchewe, Gambo
    Biswas, Anjan
    Khan, Salam
    Doka, Serge Y.
    Zhou, Qin
    Ekici, Mehmet
    Belic, Milivoj
    OPTIK, 2019, 179 : 1009 - 1018
  • [43] Optical solitons in fiber Bragg gratings with dispersive reflectivity for parabolic law nonlinearity using undetermined coefficients
    Biswas, Anjan
    Vega-Guzman, Jose
    Mahmood, Mohammad F.
    Ekici, Mehmet
    Zhou, Qin
    Moshokoa, Seithuti P.
    Belic, Milivoj R.
    OPTIK, 2019, 185 : 39 - 44
  • [44] Dispersive optical solitons with differential group delay and parabolic law nonlinearity by extended trial function method
    Biswas, Anjan
    Ekici, Mehmet
    Sonmezoglu, Abdullah
    Babatin, M. M.
    OPTIK, 2018, 169 : 403 - 415
  • [45] Bright-Dark combo optical solitons with non-local nonlinearity in parabolic law medium
    Zhou, Qin
    Zhu, Qiuping
    Liu, Yaxian
    Yao, Ping
    Bhrawy, A. H.
    Moraru, L.
    Biswas, Anjan
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2014, 8 (9-10): : 837 - 839
  • [46] Cubic-quartic optical solitons in couplers with optical metamaterials having parabolic non-local law nonlinearity
    Zayed, Elsayed M. E.
    Alngar, Mohamed E. M.
    Gepreel, Khaled A.
    OPTIK, 2022, 256
  • [47] Dipole solitons in optical metamaterials with Kerr law nonlinearity
    Triki, Houria
    Biswas, Anjan
    Moshokoa, Seithuti P.
    Belic, Milivoj
    OPTIK, 2017, 128 : 71 - 76
  • [48] Dispersive optical solitons in birefringent fibers for stochastic Schrodinger-Hirota equation with parabolic law nonlinearity and spatiotemporal dispersion having multiplicative white noise
    Zayed, Elsayed M. E.
    Shohib, Reham M. A.
    Alngar, Mohamed E. M.
    OPTIK, 2023, 278
  • [49] OPTICAL SOLITONS WITH NONLINEAR DISPERSION IN PARABOLIC LAW MEDIUM
    Zhou, Qin
    Zhu, Qiuping
    Savescu, Michelle
    Bhrawy, Ali
    Biswas, Anjan
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2015, 16 (02): : 152 - 159
  • [50] Highly dispersive optical solitons in polarization-preserving fibers with Kerr law nonlinearity by Lie symmetry
    Wang, Gangwei
    Kara, Abdul H.
    Biswas, Anjan
    Guggilla, Padmaja
    Alzahrani, Abdullah Khamis
    Belic, Milivoj R.
    PHYSICS LETTERS A, 2022, 421