Multipartite bound entanglement and three-setting Bell inequalities

被引:0
|
作者
Kaszlikowski, Dagomir [1 ]
Kwek, L.C. [1 ,2 ]
Chen, Jingling [1 ]
Oh, C.H. [1 ]
机构
[1] Department of Physics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
[2] National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 639798, Singapore
关键词
723.5 Computer Applications - 921.6 Numerical Methods - 931.3 Atomic and Molecular Physics - 931.4 Quantum Theory; Quantum Mechanics;
D O I
暂无
中图分类号
学科分类号
摘要
(Edited Abstract)
引用
收藏
页码:1 / 052309
相关论文
共 50 条
  • [31] Strengthened Bell inequalities for entanglement verification
    Lougovski, Pavel
    van Enk, S. J.
    PHYSICAL REVIEW A, 2009, 80 (03):
  • [32] Noise correlations, entanglement, and bell inequalities
    Martin, T
    Crepieux, A
    Chtchelkatchev, N
    QUANTUM NOISE IN MESOSCOPIC PHYSICS, 2003, 97 : 313 - 335
  • [33] Entanglement and Bell inequalities with boosted tt
    Dong, Zhongtian
    Goncalves, Dorival
    Kong, Kyoungchul
    Navarro, Alberto
    PHYSICAL REVIEW D, 2024, 109 (11)
  • [34] Entanglement correlations, Bell inequalities and the concurrence
    Cirone, MA
    PHYSICS LETTERS A, 2005, 339 (3-5) : 269 - 274
  • [35] Experimental Violation of Multipartite Bell Inequalities with Trapped Ions
    Lanyon, B. P.
    Zwerger, M.
    Jurcevic, P.
    Hempel, C.
    Duer, W.
    Briegel, H. J.
    Blatt, R.
    Roos, C. F.
    PHYSICAL REVIEW LETTERS, 2014, 112 (10)
  • [36] Phase space bell inequalities, three marginal theorem and quantum entanglement measures
    Auberson, G
    Mahoux, G
    Roy, SM
    Singh, V
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, PROCEEDINGS, 2003, : 21 - 24
  • [37] Multipartite entanglement inequalities via spin vector geometry
    Durkin, GA
    Simon, C
    PHYSICAL REVIEW LETTERS, 2005, 95 (18)
  • [38] Multipartite entanglement measures via Bell-basis measurements
    Beckey, Jacob L.
    Pelegri, Gerard
    Foulds, Steph
    Pearson, Natalie J.
    PHYSICAL REVIEW A, 2023, 107 (06)
  • [39] Optimized monogamy and polygamy inequalities for multipartite qubit entanglement*
    Zhang, Jia-Bin
    Jin, Zhi-Xiang
    Fei, Shao-Ming
    Wang, Zhi-Xi
    CHINESE PHYSICS B, 2021, 30 (10)
  • [40] Optimized monogamy and polygamy inequalities for multipartite qubit entanglement
    张嘉斌
    靳志祥
    费少明
    王志玺
    Chinese Physics B, 2021, 30 (10) : 81 - 91