Towards Statistical and Computational Complexities of Polyak Step Size Gradient Descent

被引:0
|
作者
The University of Texas, Austin, United States [1 ]
机构
来源
Proc. Mach. Learn. Res. | / 3930-3961期
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Computational complexity
引用
下载
收藏
页码:3930 / 3961
相关论文
共 50 条
  • [21] On Kahan's automatic step-size control and an anadromic gradient descent iteration
    Gu, Zirui
    Jin, Kexin
    Meng, Yifeng
    Xue, Linuo
    Zhang, Lei-Hong
    OPTIMIZATION, 2023,
  • [22] Extending the Step-Size Restriction for Gradient Descent to Avoid Strict Saddle Points
    Schaeffer, Hayden
    McCalla, Scott G.
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (04): : 1181 - 1197
  • [23] Generalized normalized gradient descent algorithm with direct update of the step-size parameter
    Paleologu, Constantin
    Vladeanu, Calin
    Ciochina, Silviu
    Enescu, Andrei Alexandru
    ISSCS 2007: INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, 2007, : 181 - +
  • [24] BRIDGING THE GAP BETWEEN CONSTANT STEP SIZE STOCHASTIC GRADIENT DESCENT AND MARKOV CHAINS
    Dieuleveut, Aymeric
    Durmus, Alain
    Bach, Francis
    ANNALS OF STATISTICS, 2020, 48 (03): : 1348 - 1382
  • [25] A Variable Step Size Gradient-Descent TLS Algorithm for Efficient DOA Estimation
    Zhao, Haiquan
    Luo, Wenjing
    Liu, Yalin
    Wang, Chen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (12) : 5144 - 5148
  • [26] Asymptotic analysis via stochastic differential equations of gradient descent algorithms in statistical and computational paradigms
    Wang, Yazhen
    Wu, Shang
    Journal of Machine Learning Research, 2020, 21
  • [27] Asymptotic Analysis via Stochastic Differential Equations of Gradient Descent Algorithms in Statistical and Computational Paradigms
    Wang, Yazhen
    Wu, Shang
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [28] A modified nonlinear Polak–Ribière–Polyak conjugate gradient method with sufficient descent property
    Xiaoliang Dong
    Calcolo, 2020, 57
  • [29] A descent modified Polak-Ribiere-Polyak conjugate gradient method and its global convergence
    Zhang, Li
    Zhou, Weijun
    Li, Dong-Hui
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (04) : 629 - 640
  • [30] Three modified Polak-Ribiere-Polyak conjugate gradient methods with sufficient descent property
    Sun, Min
    Liu, Jing
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,