Prediction of daily pan evaporation using support vector machines

被引:0
|
作者
N.M.A.M Institute of Technology, NITTE, Karnataka, India [1 ]
不详 [2 ]
机构
来源
Intl. J. Earth Sci. Eng. | / 1卷 / 195-202期
关键词
Correlation coefficient - Daily pan evaporation - Essential elements - Kernel function - Meteorological data - Meteorological parameters - Polynomial kernels - Training and testing;
D O I
暂无
中图分类号
学科分类号
摘要
Water scarcity globally has lead to severe problems in water management. Understanding the rate of evaporation, from surface water resources is essential for precise management of the water balance. However, evaporation is difficult to measure experimentally due to its nature. Preparing reliable forecasts of evaporation has become an essential element towards efficient water management. The objective of this paper is to predict daily pan evaporation using different kernel functions of Support Vector Machines (SVM's) based regression approach for the meteorological data obtained for the region 'Lake Abaya' which is located in the Great Rift Valley, southern part of Ethiopia. The meteorological parameters considered for study includes daily details of mean-temperature (T), wind speed (W), sunshine hours (Sh), relative humidity (Rh), rainfall (P). Among the kernel functions used for study, the polynomial kernel function proved its credibility by showing improved performance in training and testing periods. The evidence for performance of polynomial kernel function was seen in terms of correlation coefficient (CC) obtained for training and testing is respectively 0.940, 0.956 which is acceptable. © 2014 CAFET-INNOVA TECHNICAL SOCIETY.
引用
收藏
相关论文
共 50 条
  • [41] Prediction of Active Site Cleft Using Support Vector Machines
    Sonavane, Shrihari
    Chakrabarti, Pinak
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2010, 50 (12) : 2266 - 2273
  • [42] Transmembrane protein topology prediction using support vector machines
    Nugent, Timothy
    Jones, David T.
    BMC BIOINFORMATICS, 2009, 10
  • [43] A New Promoter Prediction Method using Support Vector Machines
    Arslan, Hilal
    2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,
  • [44] Accurate splice site prediction using support vector machines
    Sonnenburg, Soeren
    Schweikert, Gabriele
    Philips, Petra
    Behr, Jonas
    Raetsch, Gunnar
    BMC BIOINFORMATICS, 2007, 8 (Suppl 10)
  • [45] Prediction of alternatively spliced exons using Support Vector Machines
    Xia, Jing
    Caragea, Doina
    Brown, Susan J.
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2010, 4 (04) : 411 - 430
  • [46] Bus arrival time prediction using support vector machines
    Transportation College, Dalian Maritime University, Dalian 116026, China
    不详
    Xitong Gongcheng Lilum yu Shijian, 2007, 4 (160-164+176):
  • [47] Prediction of the chaotic time series using support vector machines
    Cui, WZ
    Zhu, CC
    Bao, WX
    Liu, JH
    ACTA PHYSICA SINICA, 2004, 53 (10) : 3303 - 3310
  • [48] Prediction of protein subcellular locations using support vector machines
    Li, NN
    Niu, XH
    Shi, F
    Li, XY
    ADVANCES IN NATURAL COMPUTATION, PT 1, PROCEEDINGS, 2005, 3610 : 1047 - 1051
  • [49] Prediction of protein structural classes using support vector machines
    X.-D. Sun
    R.-B. Huang
    Amino Acids, 2006, 30 : 469 - 475
  • [50] γ-turn types prediction in proteins using the support vector machines
    Jahandideh, Samad
    Sarvestani, Amir Sabet
    Abdolmaleki, Parviz
    Jahandideh, Mina
    Barfeie, Mahdyar
    JOURNAL OF THEORETICAL BIOLOGY, 2007, 249 (04) : 785 - 790