Photochemical CO2 hydrogenation to carbon nanotubes and H2O for oxygen recovery in space exploration

被引:0
|
作者
Wang, Jun [1 ,2 ]
Wang, Jiajia [3 ]
Feng, Jianyong [1 ,2 ]
Hu, Yingfei [1 ]
Huang, Huiting [2 ]
Zhang, Ningsi [2 ]
Zhao, Minyue [2 ]
Liu, Wangxi [1 ,2 ]
Liu, Changhao [2 ]
Zhu, Zhi [1 ]
Yan, Shicheng [2 ]
Yu, Tao [1 ]
Zhang, Ce [4 ]
Yao, Wei [4 ]
Zou, Zhigang [1 ,2 ]
Li, Zhaosheng [1 ,2 ]
机构
[1] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Coll Engn & Appl Sci, Jiangsu Key Lab Nano Technol, Nanjing 210093, Peoples R China
[3] Hohai Univ, Coll Mech & Mat, Nanjing 210098, Peoples R China
[4] China Acad Space Technol, Qian Xuesen Lab Space Technol, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
GENERALIZED GRADIENT APPROXIMATION; COBALT; SURFACES; INSIGHT; ATOMS;
D O I
10.1016/j.joule.2024.08.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The primary source of oxygen in space exploration is derived from water electrolysis. Herein, we discovered a mild photochemical hydrogenation process that can convert CO2 into carbon nanotubes (CNTs) and H2O by using a Co-based catalyst. Hence, astronauts can extract oxygen from CO2 metabolism to close the oxygen recycling loop (overall reaction: CO2- C + O2), allowing for '100% theoretical oxygen recovery. This photochemical technique has enabled a high turnover number (the molar ratio of C to Co) of 240 for CNT formation during a 100 h reaction in a flow reactor. The oxygen recovery efficiency reaches approximately 68% when using flowing CO2 and H2, surpassing the theoretical maximum (50%) for the Sabatier reaction combined with water electrolysis at the International Space Station. The tip-growth mode of CNTs principally allows long-term oxygen recovery from CO2, in addition to space manufacturing of CNTs.
引用
收藏
页码:3126 / 3141
页数:17
相关论文
共 50 条
  • [41] Stabilizing Co2C with H2O and K promoter for CO2 hydrogenation to C2+hydrocarbons
    Wang, Mingrui
    Wang, Peng
    Zhang, Guanghui
    Cheng, Zening
    Zhang, Mengmeng
    Liu, Yulong
    Li, Rongtan
    Zhu, Jie
    Wang, Jianyang
    Bian, Kai
    Liu, Yi
    Ding, Fanshu
    Senftle, Thomas P.
    Nie, Xiaowa
    Fu, Qiang
    Song, Chunshan
    Guo, Xinwen
    SCIENCE ADVANCES, 2023, 9 (24)
  • [42] A Survey of CO, CO2, and H2O in Comets and Centaurs
    Pinto, Olga Harrington
    Womack, Maria
    Fernandez, Yanga
    Bauer, James
    PLANETARY SCIENCE JOURNAL, 2022, 3 (11):
  • [43] Porosity and thermal collapse measurements of H2O, CH3OH, CO2, and H2O:CO2 ices
    Isokoski, K.
    Bossa, J. -B.
    Triemstra, T.
    Linnartz, H.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (08) : 3456 - 3465
  • [44] EXCHANGE OF OXYGEN BETWEEN SOLVENT H2O AND CO2 PRODUCED IN CYPRIDINA BIOLUMINESCENCE
    SHIMOMURA, O
    JOHNSON, FH
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1973, 51 (03) : 558 - 563
  • [45] Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: a review
    Scheffe, Jonathan R.
    Steinfeld, Aldo
    MATERIALS TODAY, 2014, 17 (07) : 341 - 348
  • [46] Impact of oxyfuel atmospheres H2O/CO2/O2 and H2O/CO2 on the oxidation of ferritic-martensitic and austenitic steels
    Huenert, D.
    Kranzmann, A.
    CORROSION SCIENCE, 2011, 53 (06) : 2306 - 2317
  • [47] Gas Analyzer for Monitoring H2O and CO2 Partial Pressures in Space Instrumentation
    Tran, Dat
    Gorius, Nicolas
    Quilligan, Gerard T.
    Gong, Qian
    Kolasinski, John R.
    Purser, Todd C.
    Siguelnitzky, Ariel
    Parker, James E.
    Wegel, Donald C.
    Glavin, Daniel P.
    Gerakines, Perry A.
    Aslam, Shahid
    Nehmetallah, George
    IEEE SENSORS JOURNAL, 2022, 22 (13) : 12576 - 12587
  • [48] INFRARED EMISSION BY HOT CO2 AND H2O
    BURCH, DE
    GRYVNAK, DA
    SPECTROCHIMICA ACTA, 1962, 18 (10): : 1372 - 1372
  • [49] Subduction of ophicarbonates and recycling of CO2 and H2O
    Kerrick, DM
    Connolly, JAD
    GEOLOGY, 1998, 26 (04) : 375 - 378