Enhancing the security in cyber-world by detecting the botnets using ensemble classification based machine learning

被引:4
|
作者
Srinivasan S. [1 ]
P D. [1 ]
机构
[1] School of Computing, Kalasalingam Academy of Research and Education, Tamilnadu
来源
Measurement: Sensors | 2023年 / 25卷
关键词
Botnets; Botnets and ensemble classification; Classification; Cyberattacks; Cybersecurity; Feature extraction; Machine learning; Security;
D O I
10.1016/j.measen.2022.100624
中图分类号
学科分类号
摘要
With various malware, botnets are the legitimate risk increasing against cybersecurity providing criminal operations like malware dispersal, distributed denial of service attacks, fraud clicking, phishing, and identification of theft. Existing techniques used for detection of botnet, which are suitable only for specific command of botnet and protocol for controlling and do not support botnet detection at earlier stages. In several computer security defense systems, honeypots are deployed successfully by security defenders. As honeypots can attract botnet compromises and expose spies in botnet membership and behaviors of the attacker, they are broadly employed in botnet defense. Thus, attackers whose role is to construct and maintain botnets have to determine honeypot trap avoiding methods. To handle the issues related to botnet attacks, machine learning techniques are used to support detection and prevent bot attacks. An Ensemble Classifier Algorithm with Stacking Process (ECASP) is proposed in this paper to select optimal features fed as input to the machine learning classifiers to estimate the botnet detection performance. As a result, the method achieves proposed achieves 94.08% accuracy, 86.5% sensitivity, 85.68% specificity, and 78.24% F-measure. © 2022 The Authors
引用
收藏
相关论文
共 50 条
  • [31] Novel Based Ensemble Machine Learning Classifiers for Detecting Breast Cancer
    Srinivas, Taarun
    Madhusudhan, Aditya Krishna Karigiri
    Dhanraj, Joshuva Arockia
    Sekaran, Rajasekaran Chandra
    Mostafaeipour, Neda
    Mostafaeipour, Negar
    Mostafaeipour, Ali
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [32] Lung Nodule Image Classification Based on Ensemble Machine Learning
    Mao Keming
    Deng Zhuofu
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2016, 6 (07) : 1679 - 1685
  • [33] Enhancing Network Security using Hybrid Machine Learning Techniques
    Sirenjeevi, P.
    Dhanakoti, V.
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [34] Deep learning based features extraction for facial gender classification using ensemble of machine learning technique
    Waris, Fazal
    Da, Feipeng
    Liu, Shanghuan
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [35] Arabic Cyberbullying Detection: Enhancing Performance by Using Ensemble Machine Learning
    Haidar, Batoul
    Chamoun, Maroun
    Serhrouchni, Ahmed
    2019 INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2019, : 323 - 327
  • [36] Enhancing Android Ransomware Detection Using an Ensemble Machine Learning Classifier
    Vali, Nasser
    Portillo-Dominguez, A. Omar
    Ayala-Rivera, Vanessa
    PROGRAMMING AND COMPUTER SOFTWARE, 2024, 50 (08) : 562 - 576
  • [37] Enhancing Phishing Website Detection Using Ensemble Machine Learning Models
    Baliyan, Himanshu
    Prasath, A. Rama
    2024 OPJU International Technology Conference on Smart Computing for Innovation and Advancement in Industry 4.0, OTCON 2024, 2024,
  • [38] Enhancing Spam Message Classification and Detection Using Transformer-Based Embedding and Ensemble Learning
    Ghourabi, Abdallah
    Alohaly, Manar
    SENSORS, 2023, 23 (08)
  • [39] Detecting Advanced Persistent Threats using Fractal Dimension based Machine Learning Classification
    Siddiqui, Sana
    Khan, Muhammad Salman
    Ferens, Ken
    Kinsner, Witold
    IWSPA'16: PROCEEDINGS OF THE 2016 ACM INTERNATIONAL WORKSHOP ON SECURITY AND PRIVACY ANALYTICS, 2016, : 64 - 69
  • [40] Using Machine Learning for Detection and Classification of Cyber Attacks in Edge IoT
    Becker, Elena
    Gupta, Maanak
    Aryal, Kshitiz
    2023 IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING AND COMMUNICATIONS, EDGE, 2023, : 400 - 410