JuryGCN: Quantifying Jackknife Uncertainty on Graph Convolutional Networks

被引:0
|
作者
Kang, Jian [1 ]
Zhou, Qinghai [1 ]
Tong, Hanghang [1 ]
机构
[1] University of Illinois at Urbana-Champaign, Urbana,IL, United States
关键词
Compendex;
D O I
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2022
中图分类号
学科分类号
摘要
Graph neural networks
引用
收藏
页码:742 / 752
相关论文
共 50 条
  • [21] Quantifying uncertainty in graph neural network explanations
    Jiang, Junji
    Ling, Chen
    Li, Hongyi
    Bai, Guangji
    Zhao, Xujiang
    Zhao, Liang
    [J]. FRONTIERS IN BIG DATA, 2024, 7
  • [22] Quantifying controllability in temporal networks with uncertainty
    Akmal, Shyan
    Ammons, Savana
    Li, Hemeng
    Gao, Michael
    Popowski, Lindsay
    Boerkoel, James C., Jr.
    [J]. ARTIFICIAL INTELLIGENCE, 2020, 289
  • [23] Differentiable Graph Module (DGM) for Graph Convolutional Networks
    Kazi, Anees
    Cosmo, Luca
    Ahmadi, Seyed-Ahmad
    Navab, Nassir
    Bronstein, Michael M. M.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (02) : 1606 - 1617
  • [24] Rethinking Graph Convolutional Networks in Knowledge Graph Completion
    Zhang, Zhanqiu
    Wang, Jie
    Ye, Jieping
    Wu, Feng
    [J]. PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 798 - 807
  • [25] Learning graph structure via graph convolutional networks
    Zhang, Qi
    Chang, Jianlong
    Meng, Gaofeng
    Xu, Shibiao
    Xiang, Shiming
    Pan, Chunhong
    [J]. PATTERN RECOGNITION, 2019, 95 : 308 - 318
  • [26] Edge utilization in graph convolutional networks for graph classification
    Yue, Xiao
    Qu, Guangzhi
    Liu, Bo
    Zhang, Feng
    [J]. 2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 808 - 813
  • [27] SGCN: A Graph Sparsifier Based on Graph Convolutional Networks
    Li, Jiayu
    Zhang, Tianyun
    Tian, Hao
    Jin, Shengmin
    Fardad, Makan
    Zafarani, Reza
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2020, PT I, 2020, 12084 : 275 - 287
  • [28] Towards Propagation Uncertainty: Edge-enhanced Bayesian Graph Convolutional Networks for Rumor Detection
    Wei, Lingwei
    Hu, Dou
    Zhou, Wei
    Yue, Zhaojuan
    Hu, Songlin
    [J]. 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (ACL-IJCNLP 2021), VOL 1, 2021, : 3845 - 3854
  • [29] Uncertainty-Based Opinion Inference on Network Data Using Graph Convolutional Neural Networks
    Zhao, Xujiang
    Chen, Feng
    Cho, Jin-Hee
    [J]. 2018 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2018), 2018, : 724 - 729
  • [30] TOWARDS A SPECTRUM OF GRAPH CONVOLUTIONAL NETWORKS
    Niepert, Mathias
    Garcia-Duran, Alberto
    [J]. 2018 IEEE DATA SCIENCE WORKSHOP (DSW), 2018, : 244 - 248