An improved multi-label lazy learning approach

被引:0
|
作者
School of Computer Science and Engineering, Southeast University, Nanjing 210096, China [1 ]
机构
来源
Jisuanji Yanjiu yu Fazhan | 2012年 / 11卷 / 2271-2282期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Multi-label learning deals with the problem where each example is represented by a single instance while associated with multiple class labels. A number of multi-label learning approaches have been proposed recently, among which multi-label lazy learning methods have shown to yield good generalization abilities. Existing multi-label learning algorithm based on lazy learning techniques does not address the correlations between different labels of each example, such that the performance of the algorithm could be negatively influenced. In this paper, an improved multi-label lazy learning approach named IMLLA is proposed. Given a test example, IMLLA works by firstly identifying its neighboring instances in the training set for each possible class. After that, a label counting vector is generated from those neighboring instances and fed to the trained linear classifiers. In this way, information embedded in other classes is involved in the process of predicting the label of each class, so that the inter-label relationships of each example are appropriately addressed. Experiments are conducted on several synthetic data sets and two benchmark real-world data sets regarding natural scene classification and yeast gene functional analysis. Experimental results show that the performance of IMLLA is superior to other well-established multi-label learning algorithms, including one of the state-of-the-art lazy-style multi-label leaner.
引用
收藏
相关论文
共 50 条
  • [31] A Semi-Supervised Ensemble Approach for Multi-Label Learning
    Gharroudi, Ouadie
    Elghazel, Haytham
    Aussem, Alex
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2016, : 1197 - 1204
  • [32] Evolutionary feature weighting to improve the performance of multi-label lazy algorithms
    Reyes, Oscar
    Morell, Carlos
    Ventura, Sebastian
    INTEGRATED COMPUTER-AIDED ENGINEERING, 2014, 21 (04) : 339 - 354
  • [33] Multi-Label Learning Based on Transfer Learning and Label Correlation
    Yang, Kehua
    She, Chaowei
    Zhang, Wei
    Yao, Jiqing
    Long, Shaosong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 61 (01): : 155 - 169
  • [34] A Multi-Instance Multi-Label Learning Approach for Protein Domain Annotation
    Meng, Yang
    Deng, Lei
    Chen, Zhigang
    Zhou, Cheng
    Liu, Diwei
    Fan, Chao
    Yan, Ting
    INTELLIGENT COMPUTING IN BIOINFORMATICS, 2014, 8590 : 104 - 111
  • [35] Multi-Directional Multi-Label Learning
    Wu, Danyang
    Pei, Shenfei
    Nie, Feiping
    Wang, Rong
    Li, Xuelong
    SIGNAL PROCESSING, 2021, 187
  • [36] Prediciton of Emergency Events: A Multi-Task Multi-Label Learning Approach
    Saha, Budhaditya
    Gupta, Sunil K.
    Venkatesh, Svetha
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PART I, 2015, 9077 : 226 - 238
  • [37] A Multi-instance Multi-label Dual Learning Approach for Video Captioning
    Ji, Wanting
    Wang, Ruili
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (02)
  • [38] Learning to Learn and Predict: A Meta-Learning Approach for Multi-Label Classification
    Wu, Jiawei
    Xiong, Wenhan
    Wang, William Yang
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 4354 - 4364
  • [39] Multi-instance multi-label learning
    Zhou, Zhi-Hua
    Zhang, Min-Ling
    Huang, Sheng-Jun
    Li, Yu-Feng
    ARTIFICIAL INTELLIGENCE, 2012, 176 (01) : 2291 - 2320
  • [40] Extreme multi-label learning : A large scale classification approach in machine learning
    Prajapati, Purvi
    Thakkar, Amit
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2019, 40 (04): : 983 - 1001