On a class of nonvariational problems in fractional Orlicz–Sobolev spaces

被引:0
|
作者
Bahrouni A. [1 ]
Bahrouni S. [1 ]
Xiang M. [2 ]
机构
[1] Mathematics Department, Faculty of Sciences, University of Monastir, Monastir
[2] College of Science, Civil Aviation University of China, Tianjin
关键词
Fractional M-Laplacian; Fractional Orlicz–Sobolev space; Nonvariational problem; Pseudomonotone operator;
D O I
10.1016/j.na.2019.111595
中图分类号
学科分类号
摘要
In this paper, we deal with a nonlinear problem driven by the fractional M-Laplacian and with a nonlinear nonhomogeneous reaction term. First, we give some further properties for the new fractional Orlicz–Sobolev space. Then, using the theory of nonlinear operators of monotone-type, we show the existence of a nonnegative solution. Our problem is nonvariational in nature. © 2019 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [31] Asymptotic Behaviours in Fractional Orlicz–Sobolev Spaces on Carnot Groups
    M. Capolli
    A. Maione
    A. M. Salort
    E. Vecchi
    The Journal of Geometric Analysis, 2021, 31 : 3196 - 3229
  • [32] Hardy and Poincare inequalities in fractional Orlicz-Sobolev spaces
    Bal, Kaushik
    Mohanta, Kaushik
    Roy, Prosenjit
    Sk, Firoj
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 216
  • [33] ENTROPY NUMBERS OF EMBEDDINGS OF FRACTIONAL BESOV-SOBOLEV SPACES IN ORLICZ SPACES
    EDMUNDS, DE
    EDMUNDS, RM
    TRIEBEL, H
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1987, 35 : 121 - 134
  • [34] Existence of Multi-peak Solutions for a Class of Quasilinear Problems in Orlicz-Sobolev Spaces
    Claudianor O. Alves
    Ailton R. da Silva
    Acta Applicandae Mathematicae, 2017, 151 : 171 - 198
  • [35] Existence of Multi-peak Solutions for a Class of Quasilinear Problems in Orlicz-Sobolev Spaces
    Alves, Claudianor O.
    da Silva, Ailton R.
    ACTA APPLICANDAE MATHEMATICAE, 2017, 151 (01) : 171 - 198
  • [36] On a Class of Schrodinger System Problem in Orlicz-Sobolev Spaces
    El-Houari, H.
    Chadli, L. S.
    Moussa, H.
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [37] On n-Widths of a Sobolev Function Class in Orlicz Spaces
    Xiao Li WANG
    Ga Ridi WU
    Acta Mathematica Sinica,English Series, 2015, (09) : 1475 - 1486
  • [38] On n-widths of a Sobolev function class in Orlicz spaces
    Xiao Li Wang
    Ga Ridi Wu
    Acta Mathematica Sinica, English Series, 2015, 31 : 1475 - 1486
  • [39] On n-Widths of a Sobolev Function Class in Orlicz Spaces
    Xiao Li WANG
    Ga Ridi WU
    Acta Mathematica Sinica, 2015, 31 (09) : 1475 - 1486
  • [40] On n-Widths of a Sobolev Function Class in Orlicz Spaces
    Wang, Xiao Li
    Wu, Ga Ridi
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (09) : 1475 - 1486