Distance preserving machine learning for uncertainty aware accelerator capacitance predictions

被引:0
|
作者
Goldenberg, Steven [1 ]
Schram, Malachi [1 ]
Rajput, Kishansingh [1 ]
Britton, Thomas [1 ]
Pappas, Chris [2 ]
Lu, Dan [2 ]
Walden, Jared [2 ]
Radaideh, Majdi, I [3 ]
Cousineau, Sarah [2 ]
Harave, Sudarshan [4 ]
机构
[1] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA
[3] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA
[4] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
来源
关键词
accelerators; spallation neutron source; machine learning; uncertainty quantification; Gaussian processes;
D O I
10.1088/2632-2153/ad7cbf
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate uncertainty estimations are essential for producing reliable machine learning models, especially in safety-critical applications such as accelerator systems. Gaussian process models are generally regarded as the gold standard for this task; however, they can struggle with large, high-dimensional datasets. Combining deep neural networks with Gaussian process approximation techniques has shown promising results, but dimensionality reduction through standard deep neural network layers is not guaranteed to maintain the distance information necessary for Gaussian process models. We build on previous work by comparing the use of the singular value decomposition against a spectral-normalized dense layer as a feature extractor for a deep neural Gaussian process approximation model and apply it to a capacitance prediction problem for the High Voltage Converter Modulators in the Oak Ridge Spallation Neutron Source. Our model shows improved distance preservation and predicts in-distribution capacitance values with less than 1% error.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Machine Learning for Complex Predictions
    Shawe-Taylor, John
    COMMUNICATIONS OF THE ACM, 2009, 52 (11) : 96 - 96
  • [32] Manifold learning by preserving distance orders
    Ataer-Cansizoglu, Esra
    Akcakaya, Murat
    Orhan, Umut
    Erdogmus, Deniz
    PATTERN RECOGNITION LETTERS, 2014, 38 : 120 - 131
  • [33] Uncertainty-aware and explainable machine learning for early prediction of battery degradation trajectory
    Rieger, Laura Hannemose
    Flores, Eibar
    Nielsen, Kristian Frellesen
    Norby, Poul
    Ayerbe, Elixabete
    Winther, Ole
    Vegge, Tejs
    Bhowmik, Arghya
    DIGITAL DISCOVERY, 2023, 2 (01): : 112 - 122
  • [34] RobOpt: A Tool for Robust Workload Optimization Based on Uncertainty-Aware Machine Learning
    Kamali, Amin
    Kantere, Verena
    Zuzarte, Calisto
    Corvinelli, Vincent
    COMPANION OF THE 2024 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, SIGMOD-COMPANION 2024, 2024, : 468 - 471
  • [35] Rapid prediction of full spin systems using uncertainty-aware machine learning
    Williams, Jake
    Jonas, Eric
    CHEMICAL SCIENCE, 2023, 14 (39) : 10902 - 10913
  • [36] Uncertainty-aware data pipeline of calibrated MEMS sensors used for machine learning
    Dorst T.
    Gruber M.
    Seeger B.
    Vedurmudi A.P.
    Schneider T.
    Eichstädt S.
    Schütze A.
    Measurement: Sensors, 2022, 22
  • [37] GPyro: uncertainty-aware temperature predictions for additive manufacturing
    Iason Sideris
    Francesco Crivelli
    Markus Bambach
    Journal of Intelligent Manufacturing, 2023, 34 : 243 - 259
  • [38] GPyro: uncertainty-aware temperature predictions for additive manufacturing
    Sideris, Iason
    Crivelli, Francesco
    Bambach, Markus
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (01) : 243 - 259
  • [39] Explainable and Privacy-Preserving Machine Learning via Domain-Aware Symbolic Regression
    Fong, Kei Sen
    Motani, Mehul
    CONFERENCE ON HEALTH, INFERENCE, AND LEARNING, 2024, 248 : 198 - 216
  • [40] Uncertainty-Aware Machine Translation Evaluation
    Glushkova, Taisiya
    Zerva, Chrysoula
    Rei, Ricardo
    Martins, Andre F. T.
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021, 2021, : 3920 - 3938