Mixed-mode (I plus II) fatigue crack growth of marine steels in Arctic environments

被引:0
|
作者
Qiao, Kaiqing [1 ]
Liu, Zhijie [1 ]
Guo, Qiuyu [1 ]
Wang, Xiaobang [1 ]
Zhang, Shengwei [1 ]
机构
[1] Dalian Maritime Univ, Naval Architecture & Ocean Engn Coll, Dalian 116026, Peoples R China
基金
中国国家自然科学基金;
关键词
Arctic equipment; Fatigue crack growth; Low-temperature mixed mode (I plus II); Fractography; Numerical simulation; PROPAGATION RATES; PREDICTION;
D O I
10.1016/j.oceaneng.2024.118686
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In the Arctic, the fatigue properties of marine steels under low temperatures and complex loads are essential for the safety of ship navigation. In this study, the fatigue crack growth (FCG) characteristics of EH36 and EQ70 steels are explored under low-temperature mixed mode (I + II) through experiments and numerical simulation. Experimental results show that the FCG life and the crack growth retardation (CGR) effect of both steels correlate positively with the loading angle and negatively with the temperature. The prediction results for FCG path indicate that the Maximum Tangential Stress (MTS) criterion provides accurate predictions for loading angles less than 45 degrees in low-temperature mixed mode (I + II), while the Richard model is more suitable for the loading angle of 60 degrees. The simulation results show that, when the crack deflects, KII decreases rapidly in magnitude while KI gradually increases and becomes dominant. The SEM results for the FCG fracture surfaces in both steels revealed that the roughness of the fracture surface is positively correlated with the loading angle, moreover clear transition regions are observed between the pre-crack and crack growth regions.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] THE SIGNIFICANCE OF MEAN STRESS ON THE FATIGUE-CRACK GROWTH THRESHOLD FOR MIXED-MODE I+II LOADING
    TONG, J
    YATES, JR
    BROWN, MW
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1994, 17 (07) : 829 - 838
  • [32] Fatigue crack growth under mixed mode I plus III loading
    Seifi, Rahman
    Omidvar, Naser
    MARINE STRUCTURES, 2013, 34 : 1 - 15
  • [33] MIXED-MODE CRACK OPENING IN FATIGUE
    DAVIDSON, DL
    LANKFORD, J
    MATERIALS SCIENCE AND ENGINEERING, 1983, 60 (03): : 225 - 229
  • [34] Mixed-mode fatigue crack growth behaviour in aluminium alloy
    Borrego, LP
    Antunes, FV
    Costa, JM
    Ferreira, JM
    INTERNATIONAL JOURNAL OF FATIGUE, 2006, 28 (5-6) : 618 - 626
  • [35] Fatigue crack growth studies under mixed-mode loading
    Biner, SB
    INTERNATIONAL JOURNAL OF FATIGUE, 2001, 23 : S259 - S263
  • [36] FATIGUE CRACK-GROWTH UNDER MIXED-MODE LOADING
    PATEL, AB
    PANDEY, RK
    FATIGUE OF ENGINEERING MATERIALS AND STRUCTURES, 1981, 4 (01): : 65 - 77
  • [37] The effect of plasticity on incipient mixed-mode fatigue crack growth
    Dahlin, P
    Olsson, M
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2003, 26 (07) : 577 - 588
  • [38] Mixed-mode fatigue crack growth in orthotropic steel decks
    Choi, Dong-Ho
    Choi, Hang-Yong
    Chung, Sang-Hwan
    Yoo, Hoon
    ADVANCED NONDESTRUCTIVE EVALUATION I, PTS 1 AND 2, PROCEEDINGS, 2006, 321-323 : 733 - 738
  • [39] MECHANICS OF MIXED-MODE SMALL FATIGUE CRACK-GROWTH
    HOSHIDE, T
    SOCIE, DF
    ENGINEERING FRACTURE MECHANICS, 1987, 26 (06) : 841 - 850
  • [40] Evaluation of crack growth direction criteria on mixed-mode fatigue crack growth experiments
    Floros, Dimosthenis
    Ekberg, Anders
    Larsson, Fredrik
    INTERNATIONAL JOURNAL OF FATIGUE, 2019, 129