Turing patterns with pentagonal symmetry

被引:39
|
作者
Aragón, J.L. [1 ]
Torres, M. [2 ]
Gil, D. [3 ]
Barrio, R.A. [4 ]
Maini, P.K. [5 ]
机构
[1] Instituto de Física, Univ. Nac. Auton. de México, Apartado Postal 1-1010, Querétaro 76000, Mexico
[2] Instituto de Física Aplicada, Consejo Sup. de Investigacions Cie., Serrano 144, 28006 Madrid, Spain
[3] Departamento de Paleontología, Fac. de Ciencias Geológicas, Universidad Complutense, Ciudad Universitaria, 28040 Madrid, Spain
[4] Instituto de Física, Univ. Nac. Auton. de México, Apartado Postal 20-364, Méx. 01000, Distrito Federal, Mexico
[5] Centre for Mathematical Biology, Mathematical Institute, Oxford University, 24-29 St. Giles, Oxford OX1 3LB, United Kingdom
关键词
Aspect ratio - Boundary conditions - Computer simulation - Functions - Mathematical models - Pigments - Random processes;
D O I
10.1103/PhysRevE.65.051913
中图分类号
学科分类号
摘要
We explore numerically the formation of Turing patterns in a confined circular domain with small aspect ratio. Our results show that stable fivefold patterns are formed over a well defined range of disk sizes, offering a possible mechanism for inducing the fivefold symmetry observed in early development of regular echinoids. Using this pattern as a seed, more complex biological structures can be mimicked, such as the pigmentation pattern of sea urchins and the plate arrangements of the calyxes of primitive camerate crinoids. © 2002 The American Physical Society.
引用
收藏
页码:1 / 051913
相关论文
共 50 条
  • [41] Stochastic simulation of Turing patterns
    Fu Zheng-Ping
    Xu Xin-Hang
    Wang Hong-Li
    Ouyang Qi
    CHINESE PHYSICS LETTERS, 2008, 25 (04) : 1220 - 1223
  • [42] Turing patterns in nonlinear optics
    Staliunas, K
    Sánchez-Morcillo, VJ
    OPTICS COMMUNICATIONS, 2000, 177 (1-6) : 389 - 395
  • [43] MODELING OF CAVITIES FORMATION IN ELECTROLYTIC PARTICLES WITH PENTAGONAL SYMMETRY
    Limanova, N. I.
    Mamzin, E. A.
    Talalova, E. A.
    Vikarchuk, A. A.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2009, (02): : 209 - 216
  • [44] SIDEWALL FORCING OF HEXAGONAL TURING PATTERNS - RHOMBIC PATTERNS
    PEREZMUNUZURI, V
    GOMEZGESTEIRA, M
    MUNUZURI, AP
    CHUA, LO
    PEREZVILLAR, V
    PHYSICA D, 1995, 82 (1-2): : 195 - 204
  • [45] Structure and Properties of Exotic Nano- and Mesodiamonds with Pentagonal Symmetry
    F. N. Tomilin
    V. A. Pomogaev
    Yu. A. Melchakova
    P. V. Artyushenko
    A. A. Shubin
    A. M. Volodin
    I. L. Zilberberg
    P. V. Avramov
    Russian Physics Journal, 2022, 64 : 2046 - 2051
  • [46] Particle dynamics simulations of Turing patterns
    Dziekan, P.
    Lemarchand, A.
    Nowakowski, B.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (07):
  • [47] TURING PATTERNS IN A SIMPLE GEL REACTOR
    VIGIL, RD
    OUYANG, Q
    SWINNEY, HL
    PHYSICA A, 1992, 188 (1-3): : 17 - 25
  • [48] Propagation of Turing patterns in a plankton model
    Upadhyay, R. K.
    Volpert, V.
    Thakur, N. K.
    JOURNAL OF BIOLOGICAL DYNAMICS, 2012, 6 (02) : 524 - 538
  • [49] Stochastic Turing patterns in the Brusselator model
    Biancalani, Tommaso
    Fanelli, Duccio
    Di Patti, Francesca
    PHYSICAL REVIEW E, 2010, 81 (04):
  • [50] Turing model for the patterns of lady beetles
    Liaw, SS
    Yang, CC
    Liu, RT
    Hong, JT
    PHYSICAL REVIEW E, 2001, 64 (04): : 5 - 419095