Anion-Driven Bandgap Tuning of AgIn(S x Se1-x )2 Quantum Dots

被引:1
|
作者
Kipkorir, Anthony [1 ,2 ]
Chen, Bo-An [1 ,2 ]
Kamat, Prashant V. [1 ,2 ,3 ]
机构
[1] Univ Notre Dame, Radiat Lab, Notre Dame, IN 46556 USA
[2] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA
[3] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA
关键词
ternary semiconductor; quantum dot; excitedstate dynamics; sub-bandgap states; transient spectroscopy; FACILE SYNTHESIS; NANOCRYSTALS; CHALCOPYRITE; PHOTOLUMINESCENCE; NANOPARTICLES; AGINSE2; EXCITON; STATES; GAP;
D O I
10.1021/acsnano.4c07774
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Accurate tuning of the electronic and photophysical properties of quantum dots is required to maximize the light conversion efficiencies in semiconductor-assisted processes. Herein, we report a facile synthetic procedure for AgIn(SxSe1-x)2 quantum dots with S content (x) ranging from 1 to 0. This simple approach allowed us to tune the bandgap (2.6-1.9 eV) and extend the absorption of AgIn(S(x)Se(1-x))2 quantum dots to lower photon energies (near-IR) while maintaining a small QD size (similar to 5 nm). Ultraviolet spectroscopy studies revealed that the change in the bandgap is modulated by the electronic shifts in both the valence band and the conduction band positions. The negative overall charge of the as-synthesized quantum dots enabled us to make films of quantum dots on mesoscopic TiO2. Excited state studies of the AgIn(SxSe1-x)2 quantum dot films demonstrated a fast charge injection to TiO2, and the electron transfer rate constant was found to be 1.5-3.5 x 10(11) s(-1). The results of this work present AgIn(SxSe1-x)2 quantum dots synthesized by the one-step method as a potential candidate for designing light-harvesting assemblies.
引用
收藏
页码:28170 / 28177
页数:8
相关论文
共 50 条
  • [31] Effects of S and Se contents on the physical and photovoltaic properties of Cu2ZnSn(SX, Se1-X)4 thin films: achieving a PCE of 9.47%
    Son, Dae-Ho
    Kim, Young-Ill
    Kim, Seung-Hyun
    Nam, Dahyun
    Cheong, Hyeonsik
    Kang, Jin-Kyu
    Yang, Kee-Jeong
    Kim, Dae-Hwan
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (40) : 22986 - 22995
  • [32] The effect of the selenization process on grain size and performance of CuIn(Sx,Se1-x)2 counter electrodes
    Zhang, Yan-zhu
    Li, Huan-huan
    Zhou, Zheng-ji
    Kou, Dong-xing
    Zhou, Wen-hui
    Wu, Si-xin
    RSC ADVANCES, 2015, 5 (15): : 11599 - 11603
  • [33] Composition tuning of bandgap and diameter of CdSe/Cd1-xZnx S core/shell quantum dots
    Pisheh, Hadi Sedaghat
    Gheshlaghi, Negar
    Unlu, Hilmi
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2017, 68 : 295 - 301
  • [34] Thermal Expansion and Thermal Conductivity of (In2S3)x(AgIn5S8)1 –x Alloys
    I. V. Bodnar
    A. A. Feshchenko
    V. V. Khoroshko
    Semiconductors, 2021, 55 : 133 - 136
  • [35] Asymmetric versus symmetric HgTe / Cd x Hg 1 - x Te double quantum wells: Bandgap tuning without electric field
    Topalovic, Dusan B.
    Arsoski, Vladimir V.
    Tadic, Milan Z.
    Peeters, Francois M.
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (06)
  • [36] SPINELS WITH SUBSTITUTED NONMETAL LATICES .1. X-RAY AND IR SPECTROSCOPY OF SYSTEMS ZNCR2(S(1-X)SE(X)4, CDCR2(S(1-X)SE(X))4 AND ZNCR2(SE(1-X)TE(X))4
    RIEDEL, E
    HORVATH, E
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1969, 371 (5-6): : 248 - &
  • [37] Alloyed (ZnS)x(CuInS2)1-x Semiconductor Nanorods: Synthesis, Bandgap Tuning and Photocatalytic Properties
    Ye, Chen
    Regulacio, Michelle D.
    Lim, Suo Hon
    Xu, Qing-Hua
    Han, Ming-Yong
    CHEMISTRY-A EUROPEAN JOURNAL, 2012, 18 (36) : 11258 - 11263
  • [38] Band Gap of (In2S3)x(AgIn5S8)1 –x Single-Crystal Alloys
    I. V. Bodnar
    A. A. Feschenko
    V. V. Khoroshko
    Semiconductors, 2020, 54 : 1611 - 1615
  • [39] Crystal Structure and Band Gap of (MnIn2S4)1–x • (AgIn5S8)x Alloys
    I. V. Bodnar
    Chan Bin Tkhan
    Semiconductors, 2018, 52 : 1086 - 1090
  • [40] Thermal Expansion and Thermal Conductivity of (In2S3)x(AgIn5S8)1-x Alloys
    Bodnar, I. V.
    Feshchenko, A. A.
    Khoroshko, V. V.
    SEMICONDUCTORS, 2021, 55 (02) : 133 - 136