Segmentation lung fields in thoracic CT scans using manifold method

被引:0
|
作者
School of Electronic Engineering, University of Electronic Science and Technology of China, ChengDu, 610054, China [1 ]
不详 [2 ]
机构
来源
Telkomnika | 2012年 / 5卷 / 1005-1014期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
When the pathologies are in the close vicinity of the lung wall, the acquisition of the pulmonary nodules depends on accurate segmentation of the lung fields. However, the traditional methods based on pixels intensity cannot segment out them correctly. The paper proposes an effective segmentation method based on primary component analysis (PCA) manifold. It used the lung fields' relationship in a lung to construct the shape manifold with B-spline interpolation. In the manifold space, according to the position of the affected lung field, a measurement had been used to find an amended position, and it was projected back into the shape space to reconstruct the prior shape. The shape was registered with the affected one and then segmented the original lung section to obtain the correct lung field. The experiment results illustrate that the proposed method has more correct segmentation ability than the methods based on rolling-ball and pixel intensity. © 2012 Universitas Ahmad Dahlan.
引用
收藏
相关论文
共 50 条
  • [31] Automatic Lung Segmentation of Volumetric Low-Dose CT Scans Using Graph Cuts
    Ali, Asem M.
    Farag, Aly A.
    ADVANCES IN VISUAL COMPUTING, PT I, PROCEEDINGS, 2008, 5358 : 258 - 267
  • [32] Segmentation of lung lesions on CT scans using watershed, active contours, and Markov random field
    Tan, Yongqiang
    Schwartz, Lawrence H.
    Zhao, Binsheng
    MEDICAL PHYSICS, 2013, 40 (04)
  • [33] Initialization Method for Lung CT Segmentation
    Cavalcanti Neto, Edson
    Cortez, Paulo C.
    Rodrigues, Valberto E.
    Almeida, Thomaz M.
    Ribeiro, Alyson B. N.
    Cavalcante, Tarique S.
    XXVI BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2018, VOL. 2, 2019, 70 (02): : 289 - 292
  • [34] Automatic segmentation and registration of lung surfaces in temporal chest CT scans
    Hong, H
    Lee, J
    Yim, Y
    Shin, YG
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT 2, PROCEEDINGS, 2005, 3523 : 463 - 470
  • [35] Interactive lung segmentation in abnormal human and animal chest CT scans
    Kockelkorn, Thessa T. J. P.
    Schaefer-Prokop, Cornelia M.
    Bozovic, Gracijela
    Munoz-Barrutia, Arrate
    van Rikxoort, Eva M.
    Brown, Matthew S.
    de Jong, Pim A.
    Viergever, Max A.
    van Ginneken, Bram
    MEDICAL PHYSICS, 2014, 41 (08) : 417 - 429
  • [36] SEGMENTATION OF ORGANS AT RISK IN THORACIC CT IMAGES USING A SHARPMASK ARCHITECTURE AND CONDITIONAL RANDOM FIELDS
    Trullo, R.
    Petitjean, C.
    Ruan, S.
    Dubray, B.
    Nie, D.
    Shen, D.
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 1003 - 1006
  • [37] UniToChest: A Lung Image Dataset for Segmentation of Cancerous Nodules on CT Scans
    Chaudhry, Hafiza Ayesha Hoor
    Renzulli, Riccardo
    Perlo, Daniele
    Santinelli, Francesca
    Tibaldi, Stefano
    Cristiano, Carmen
    Grosso, Marco
    Limerutti, Giorgio
    Fiandrotti, Attilio
    Grangetto, Marco
    Fonio, Paolo
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT I, 2022, 13231 : 185 - 196
  • [38] Automatic Image Enhancement For Improved Lung Lesion Segmentation In CT Scans
    Lu, K.
    Xue, Z.
    Wong, S. T. C.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2013, 187
  • [39] The Influence of a Coherent Annotation and Synthetic Addition of Lung Nodules for Lung Segmentation in CT Scans
    Sousa, Joana
    Pereira, Tania
    Neves, Ines
    Silva, Francisco
    Oliveira, Helder P.
    SENSORS, 2022, 22 (09)
  • [40] Automatic Lung Segmentation of Helical-CT Scans in Experimental Induced Lung Injury
    Cuevas, L. M.
    Spieth, P. M.
    Carvalho, A. R.
    de Abreu, M. G.
    Koch, E.
    4TH EUROPEAN CONFERENCE OF THE INTERNATIONAL FEDERATION FOR MEDICAL AND BIOLOGICAL ENGINEERING, 2009, 22 (1-3): : 764 - 767