Enhanced intrusion detection model based on principal component analysis and variable ensemble machine learning algorithm

被引:1
|
作者
John, Ayuba [1 ]
Bin Isnin, Ismail Fauzi [2 ]
Madni, Syed Hamid Hussain [3 ]
Muchtar, Farkhana Binti [2 ]
机构
[1] Fed Univ Dutse, Fac Comp, Dutse, Jigawa State, Nigeria
[2] Univ Teknol Malaysia UTM, Fac Comp, Johor Baharu, Malaysia
[3] Univ Southampton, Sch Elect & Comp Sc, Johor Baharu, Malaysia
来源
关键词
Network security; Intrusion detection system; Classification; Detection; and Machine Learning Algorithm; PERFORMANCE; PREDICTION; STACKING; SYSTEMS;
D O I
10.1016/j.iswa.2024.200442
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The intrusion detection system (IDS) model, which can identify the presence of intruders in the network and take some predefined action for safe data transit across the network, is advantageous in achieving security in both simple and advanced network systems. Several IDS models have various security problems, such as low detection accuracy and high false alarms, which can be caused by the network traffic dataset's excessive dimensionality and class imbalance in the creation of IDS models. Principal Component Analysis (PCA) has proven to be a helpful feature selection technique for dimensionality reduction. As a result, because it is a linear transformation, it has challenges capturing non-linear relationships between feature properties in the network traffic datasets. This paper proposes a variable ensemble machine learning method to solve the problem and achieve a low variance model with high accuracy and low false alarm. First, PCA is combined with the AdaBoost ensemble machine learning algorithm, which acts as stagewise additive modelling to compensate for PCA's deficiency in feature selection in network traffic by minimizing the exponential loss function. Secondly, PCA is used for feature selection, and a LogitBoost classifier algorithm can be used for multiclass classification and acts as an additive tree regression to compensate for the PCA's weakness by minimizing the Logistic Loss to provide an optimal classifier output. Finally, the low variance ability of RandomForest, which employs the bagging approach, is applied to eliminate overfittings. The experiments of the IDS model developed from the proposed methods were evaluated on the WSN-DS, NSL-KDD, and UNSW-N15 datasets. The performance of the methods, PCA with AdaBoost, on the WSN-DS dataset has an accuracy score of 92.3 %, an 89.0 % accuracy score on the NSL-KDD dataset, and a 67.9 % accuracy score on UNSW-N15, which is the least accurate score. PCA and RandomForest surpassed them by scoring 100 % accuracy on all three datasets. PCA and Bagging have an accuracy score of 99.8 % on the WSN-DS dataset, 100 % on the NSL-KDD dataset, and 93.4 % on the UNSW-N15 dataset. In comparison, PCA and LogitBoost have an accuracy score of 98.9 % on the WSN-DS dataset, 100 % on the NSL-KDD dataset, and 88.7 % on the UNSW-N15 dataset.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Ensemble learning model based on selected diverse principal component analysis models for process monitoring
    Li, Zhichao
    Yan, Xuefeng
    JOURNAL OF CHEMOMETRICS, 2018, 32 (06)
  • [22] Machine Learning and Ensemble Learning Techniques for Intrusion Detection Systems: A Performance Analysis Based on Feature Selection Methods
    Basarslan, Muhammet Sinan
    Turgut, Zeynep
    INTELLIGENT AND FUZZY SYSTEMS, VOL 3, INFUS 2024, 2024, 1090 : 117 - 124
  • [23] Anomaly-Based Intrusion Detection Using Machine Learning: An Ensemble Approach
    Lalduhsaka R.
    Bora N.
    Khan A.K.
    International Journal of Information Security and Privacy, 2022, 16 (01):
  • [24] A Hypergraph-Based Machine Learning Ensemble Network Intrusion Detection System
    Lin, Zong-Zhi
    Pike, Thomas D.
    Bailey, Mark M.
    Bastian, Nathaniel D.
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (11): : 6911 - 6923
  • [25] Microaneurysm Detection Using Principal Component Analysis and Machine Learning Methods
    Cao, Wen
    Czarnek, Nicholas
    Shan, Juan
    Li, Lin
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2018, 17 (03) : 191 - 198
  • [26] A novel intrusion detection method based on combining ensemble learning with induction-enhanced particle swarm algorithm
    Min, Fang
    ICNC 2007: Third International Conference on Natural Computation, Vol 3, Proceedings, 2007, : 520 - 524
  • [27] Intrusion Detection in Smart Grid Measurement Infrastructures based on Principal Component Analysis
    Drayer, Elisabeth
    Routtenberg, Tirza
    2019 IEEE MILAN POWERTECH, 2019,
  • [29] A novel ensemble learning-based model for network intrusion detection
    Ngamba Thockchom
    Moirangthem Marjit Singh
    Utpal Nandi
    Complex & Intelligent Systems, 2023, 9 : 5693 - 5714
  • [30] An Ensemble Learning Based Intrusion Detection Model for Industrial IoT Security
    Mohy-Eddine, Mouaad
    Guezzaz, Azidine
    Benkirane, Said
    Azrour, Mourade
    Farhaoui, Yousef
    BIG DATA MINING AND ANALYTICS, 2023, 6 (03) : 273 - 287