Nonlinear finite element analysis of reinforced concrete flat plate punching using a thick-shell modelling approach

被引:0
|
作者
Goh, Chong Yik M. [1 ]
Hrynyk, Trevor D. [2 ]
机构
[1] Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, United States
[2] Department of Civil and Environmental Engineering, University of Waterloo, Waterloo,ON, Canada
关键词
Reinforced concrete - Plates (structural components) - Finite element method;
D O I
暂无
中图分类号
学科分类号
摘要
The punching shear resistance of reinforced concrete flat plates is an area where design is typically done in a highly-idealized manner, using provisions developed from experimental results of isolated slab-column connections; yet, involves structures where performance may be greatly impacted by system-level response. This paper presents the development and application of a practical thick-shell finite element-based nonlinear modelling procedure for reinforced concrete flat plate slab systems. Cracked concrete material modelling based on the formulations of the Disturbed Stress Field Model is employed in conjunction with computationally-efficient layered thick-shell finite elements that accommodate through-thickness shearing effects and are shown to be capable of capturing brittle punching-governed failure modes. A simple low-cost sectional analysis modification procedure is proposed to incorporate strength enhancements attributed to confining effects stemming from disturbances in slab-column connection regions. Load-displacement responses and failure modes developed using the proposed modelling procedure are shown to capture observed experimental responses and provide response estimates similar to those obtained using more costly three-dimensional solid continuum finite element modelling techniques. Finally, the analysis results presented were developed using simple-to-define concrete property input without the need for supplemental material model or analysis parameter calibration. © 2020 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [41] A nonlinear quadrilateral thin flat layered shell element for the modeling of reinforced concrete wall structures
    Rojas, F.
    Anderson, J. C.
    Massone, L. M.
    BULLETIN OF EARTHQUAKE ENGINEERING, 2019, 17 (12) : 6491 - 6513
  • [42] NONLINEAR FINITE-ELEMENT ANALYSIS OF REINFORCED-CONCRETE PANELS
    CHANG, TY
    TANIGUCHI, H
    CHEN, WF
    JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 1987, 113 (01): : 122 - 140
  • [43] NONLINEAR FINITE-ELEMENT ANALYSIS OF REINFORCED-CONCRETE MEMBRANES
    VECCHIO, FJ
    ACI STRUCTURAL JOURNAL, 1989, 86 (01) : 26 - 35
  • [44] Nonlinear finite element analysis for reinforced concrete haunched beams with opening
    Jaafer, Abdulkhaliq A.
    Abdulghani, Ali W.
    INTERNATIONAL CONFERENCE ON MATERIALS ENGINEERING AND SCIENCE, 2018, 454
  • [45] NONLINEAR FINITE-ELEMENT ANALYSIS OF REINFORCED AND PRESTRESSED CONCRETE STRUCTURES
    MANG, HA
    MESCHKE, G
    ENGINEERING STRUCTURES, 1991, 13 (02) : 211 - 226
  • [46] Nonlinear finite element analysis for the temperature field of reinforced concrete slabs
    Jiangsu Key Lab. of Environmental Impact and Structural Safety in Eng. State Key Lab. for Geomechanics and Deep Underground Eng., China Univ. of Mining and Technol., Xuzhou
    221116, China
    不详
    361000, China
    Sichuan Daxue Xuebao (Gongcheng Kexue Ban), 3 (44-52):
  • [47] Nonlinear finite element analysis of deep reinforced concrete coupling beams
    Zhao, ZZ
    Kwan, AKH
    He, XG
    ENGINEERING STRUCTURES, 2004, 26 (01) : 13 - 25
  • [48] Nonlinear Finite Element Analysis of FRP Strengthened Reinforced Concrete Beams
    Sasmal S.
    Kalidoss S.
    Srinivas V.
    Journal of The Institution of Engineers (India): Series A, 2012, 93 (04) : 241 - 249
  • [49] Nonlinear Finite Element Analysis Formulation for Shear in Reinforced Concrete Beams
    Kim, Sang-Ho
    Han, Sun-Jin
    Kim, Kang Su
    APPLIED SCIENCES-BASEL, 2019, 9 (17):
  • [50] Nonlinear finite element analysis of concrete beams reinforced with FRP bars
    Li, N.
    Luo, Y.
    ADVANCES IN HETEROGENEOUS MATERIAL MECHANICS 2008, 2008, : 1477 - 1480