Dagstuhl seminar on big stream processing

被引:0
|
作者
Sakr S. [1 ]
Rabl T. [2 ]
Hirzel M. [3 ]
Carbone P. [4 ]
Strohbach M. [5 ]
机构
[1] Sakr, Sherif
[2] Rabl, Tilmann
[3] Hirzel, Martin
[4] Carbone, Paris
[5] Strohbach, Martin
基金
欧盟地平线“2020”;
关键词
D O I
10.1145/3316416.3316426
中图分类号
学科分类号
摘要
Stream processing can generate insights from big data in real time as it is being produced. This paper reports findings from a 2017 seminar on big stream processing, focusing on applications, systems, and languages. © 2018 Association for Computing Machinery.
引用
收藏
页码:36 / 39
页数:3
相关论文
共 50 条
  • [41] Stream Processing of Scientific Big Data on Heterogeneous Platforms - Image Analytics on Big Data in Motion
    Najmabadi, S. M.
    Klaiber, M.
    Wang, Z.
    Baroud, Y.
    Simon, S.
    2013 IEEE 16TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2013), 2013, : 965 - 970
  • [42] Appendix B: Open problems at the 2002 Dagstuhl Seminar on algorithmic combinatorial game theory
    Demaine, ED
    Fleischer, R
    Fraenkel, AS
    Nowakowski, RJ
    THEORETICAL COMPUTER SCIENCE, 2004, 313 (03) : 539 - 543
  • [43] Report from Dagstuhl Seminar 21442: Ensuring the Reliability and Robustness of Database Management Systems
    Manuel Rigger
    Alexander Böhm
    Maria Christakis
    Eric Lo
    Datenbank-Spektrum, 2022, 22 (3) : 261 - 263
  • [44] Using Microservices and Event Driven Architecture for Big Data Stream Processing
    Zhelev, Svetoslav
    Rozeva, Anna
    PROCEEDINGS OF THE 45TH INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'19), 2019, 2172
  • [45] Big Log Data Stream Processing: Adapting an Anomaly Detection Technique
    Dietz, Marietheres
    Pernul, Guenther
    DATABASE AND EXPERT SYSTEMS APPLICATIONS (DEXA 2018), PT II, 2018, 11030 : 159 - 166
  • [46] Implementation of a Distributed Processing Engine for Spatial Big-Data Processing based on Batch and Stream
    Kim, Sang-Su
    Song, Kwaun-Sik
    2017 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC), 2017, : 1196 - 1198
  • [47] SPSC: Stream Processing Framework Atop Serverless Computing for Industrial Big Data
    Cai, Zinuo
    Chen, Zebin
    Chen, Xinglei
    Ma, Ruhui
    Guan, Haibing
    Buyya, Rajkumar
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, : 1 - 9
  • [48] Representing a Model for the Anonymization of Big Data Stream Using In-Memory Processing
    Elham Shamsinejad
    Touraj Banirostam
    Mir Mohsen Pedram
    Amir Masoud Rahmani
    Annals of Data Science, 2025, 12 (1) : 223 - 252
  • [49] An Efficient Approach for Storage of Big Data Streams in Distributed Stream Processing Systems
    Alshamrani, Sultan
    Waseem, Quadri
    Alharbi, Abdullah
    Alosaimi, Wael
    Turabieh, Hamza
    Alyami, Hashem
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (05) : 91 - 98
  • [50] Big Data solutions - data ingestion and stream processing for demand response management
    Oprea, Simona-Vasilica
    Bara, Adela
    Diaconita, Vlad
    Preotescu, Dan
    Tor, Osman Bulent
    2019 23RD INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2019, : 697 - 702