Neural network predictive models are popular for production forecasting in unconventional reservoirs due to their ability to learn complex relationships between well properties and production responses from extensive field data. The intricate flow behavior in hydraulically fractured unconventional reservoirs, which remains poorly understood, makes these statistical models particularly useful. Various neural network variants have been developed for production prediction in these reservoirs, each offering predictive capability of varying levels of granularity, accuracy, and robustness against noisy and incomplete data. Neural network predictive models that integrate physical principles are especially useful for subsurface systems, as they provide predictions that adhere to physical laws. This work introduces a new dynamic physics- guided deep learning (DPGDL) model that incorporates physical functions into neural networks and employs residual learning to compensate for the imperfect description of the physics, under variable data support. The new formulation allows for dynamic residual correction, avoids unintended bias due to less- than- ideal input data, and provides robust longterm predictions. The DPGDL model improves upon a static formulation by utilizing a masked loss function to enable learning from wells with varying production lengths and by improving the results when partially- observed timesteps are present. In addition, a sequence- to- sequence residual model has been developed to correct additional biases in the longterm predictions from the physics- constrained neural networks. Several synthetic data sets with increasing complexity as well as a field data set from the Bakken are used to demonstrate the performance of the new DPGDL model.
机构:
Univ Politecn Madrid, ETS Ingn Sistemas Informat, Calle Alan Turing S-N, Madrid 28031, SpainUniv Politecn Madrid, ETS Ingn Sistemas Informat, Calle Alan Turing S-N, Madrid 28031, Spain
Martin-Suazo, Silvia
Moron-Lopez, Jesus
论文数: 0引用数: 0
h-index: 0
机构:
Polish Acad Sci, European Reg Ctr Ecohydrol, 3 Tylna, PL-90364 Lodz, PolandUniv Politecn Madrid, ETS Ingn Sistemas Informat, Calle Alan Turing S-N, Madrid 28031, Spain
Moron-Lopez, Jesus
Vakaruk, Stanislav
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Madrid, ETS Ingn Sistemas Informat, Calle Alan Turing S-N, Madrid 28031, SpainUniv Politecn Madrid, ETS Ingn Sistemas Informat, Calle Alan Turing S-N, Madrid 28031, Spain
Vakaruk, Stanislav
Karamchandani, Amit
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Madrid, ETS Ingn Sistemas Informat, Calle Alan Turing S-N, Madrid 28031, SpainUniv Politecn Madrid, ETS Ingn Sistemas Informat, Calle Alan Turing S-N, Madrid 28031, Spain
Karamchandani, Amit
Aguilar, Juan Antonio Pascual
论文数: 0引用数: 0
h-index: 0
机构:
Univ Alcala, IMDEA Water Inst, Ave Punto Com 2,Parque Cientif Tecnol, Alcala De Henares 28805, SpainUniv Politecn Madrid, ETS Ingn Sistemas Informat, Calle Alan Turing S-N, Madrid 28031, Spain
Aguilar, Juan Antonio Pascual
Mozo, Alberto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Madrid, ETS Ingn Sistemas Informat, Calle Alan Turing S-N, Madrid 28031, SpainUniv Politecn Madrid, ETS Ingn Sistemas Informat, Calle Alan Turing S-N, Madrid 28031, Spain
Mozo, Alberto
Gomez-Canaval, Sandra
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Madrid, ETS Ingn Sistemas Informat, Calle Alan Turing S-N, Madrid 28031, SpainUniv Politecn Madrid, ETS Ingn Sistemas Informat, Calle Alan Turing S-N, Madrid 28031, Spain
机构:
Univ Alcala, IMDEA Water Inst, Ave Punto Com 2,Parque Cientif Tecnol, Alcala De Henares 28805, SpainUniv Politecn Madrid, ETS Ingn Sistemas Informat, Calle Alan Turing S-N, Madrid 28031, Spain
机构:
Sejong Univ, Dept Software, Interact Technol Lab, Seoul 05006, South KoreaSejong Univ, Dept Software, Interact Technol Lab, Seoul 05006, South Korea
Mustaqeem
Ishaq, Muhammad
论文数: 0引用数: 0
h-index: 0
机构:
Sejong Univ, Dept Software, Interact Technol Lab, Seoul 05006, South KoreaSejong Univ, Dept Software, Interact Technol Lab, Seoul 05006, South Korea
Ishaq, Muhammad
Kwon, Soonil
论文数: 0引用数: 0
h-index: 0
机构:
Sejong Univ, Dept Software, Interact Technol Lab, Seoul 05006, South KoreaSejong Univ, Dept Software, Interact Technol Lab, Seoul 05006, South Korea