24 hour load forecasting using combined very-short-term and short-term multi-variable time-series model

被引:1
|
作者
Lee W. [1 ]
Lee M. [2 ]
Kang B.-O. [3 ]
Jung J. [1 ]
机构
[1] Dept. of Energy System Research, Ajou University
[2] Dept. of Energy Science, Sungkyunkwan University
[3] Dept. of Electric Engineering, Dong-a University
来源
Jung, Jaesung (jjung@ajou.ac.kr) | 1600年 / Korean Institute of Electrical Engineers卷 / 66期
关键词
24 hour load forecasting; Combined multi-variate time-series model; Multi-variate time-series model; Short-term load forecasting; Very-short-term load forecasting;
D O I
10.5370/KIEE.2017.66.3.493
中图分类号
学科分类号
摘要
This paper proposes a combined very-short-term and short-term multi-variate time-series model for 24 hour load forecasting. First, the best model for very-short-term and short-term load forecasting is selected by considering the least error value, and then they are combined by the optimal forecasting time. The actual load data of industry complex is used to show the effectiveness of the proposed model. As a result the load forecasting accuracy of the combined model has increased more than a single model for 24 hour load forecasting. Copyright © The Korean Institute of Electrical Engineers.
引用
收藏
页码:493 / 499
页数:6
相关论文
共 50 条
  • [31] Short-term load forecasting based on a multi-model
    Faller, C
    Dvorákova, R
    Horácek, P
    POWER PLANTS AND POWER SYSTEMS CONTROL 2000, 2000, : 107 - 112
  • [32] MPM: Multi Patterns Memory Model for Short-Term Time Series Forecasting
    Wang, Dezheng
    Liu, Rongjie
    Chen, Congyan
    Li, Shihua
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (01) : 438 - 448
  • [33] Comparison of very short-term load forecasting techniques
    Liu, K
    Subbarayan, S
    Shoults, RR
    Manry, MT
    Kwan, C
    Lewis, FL
    Naccarino, J
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1996, 11 (02) : 877 - 882
  • [34] Analysis of an adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting
    Chen, JF
    Wang, WM
    Huang, CM
    ELECTRIC POWER SYSTEMS RESEARCH, 1995, 34 (03) : 187 - 196
  • [35] Short-Term Load Forecasting using A Long Short-Term Memory Network
    Liu, Chang
    Jin, Zhijian
    Gu, Jie
    Qiu, Caiming
    2017 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2017,
  • [36] Very short-term load forecasting using artificial neural networks
    Charytoniuk, W
    Chen, MS
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2000, 15 (01) : 263 - 268
  • [37] Fuzzy neural very-short-term load forecasting based on chaotic dynamics reconstruction
    Yang, HY
    Ye, H
    Wang, GZ
    Khan, J
    Hu, TF
    CHAOS SOLITONS & FRACTALS, 2006, 29 (02) : 462 - 469
  • [38] Synergism of Deep Neural Network and ELM for Smart Very-Short-Term Load Forecasting
    Alamaniotis, Miltiadis
    PROCEEDINGS OF 2019 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE), 2019,
  • [39] AN ACCURATE MODEL FOR SHORT-TERM LOAD FORECASTING
    ABOUHUSSIEN, MS
    KANDIL, MS
    TANTAWY, MA
    FARGHAL, SA
    IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1981, 100 (09): : 4158 - 4165
  • [40] Combination model for short-term load forecasting
    School of Information and Electromechanical Engineering, Shanghai Normal University, Shanghai, 0086/Shanghai, China
    Chen, Q. (hellowangchenchen@163.com), 1600, Bentham Science Publishers B.V., P.O. Box 294, Bussum, 1400 AG, Netherlands (05):