A Projective Geometric View for 6D Pose Estimation in mmWave MIMO Systems

被引:0
|
作者
Shen, Shengqiang [1 ]
Wymeersch, Henk [2 ]
机构
[1] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221000, Peoples R China
[2] Chalmers Univ Technol, Dept Elect Engn, Gothenburg 41258, Sweden
基金
瑞典研究理事会;
关键词
Millimeter wave communication; Pose estimation; Three-dimensional displays; Antenna arrays; Location awareness; Computational modeling; MIMO communication; AoD; AoA; pose estimation; SLAM; antenna arrays; mmWave communication; VISIBLE-LIGHT SYSTEMS; ORIENTATION ESTIMATION; PERFORMANCE LIMITS; LOCALIZATION; POSITION; INFORMATION;
D O I
10.1109/TWC.2024.3359253
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Millimeter-wave (mmWave) systems in the 30-300 GHz bands are among the fundamental enabling technologies of 5G and beyond 5G, providing large bandwidths, not only for high data rate communication but also for precise positioning services, in support of high accuracy demanding applications such as for robotics, extended reality, or remote surgery. With the possibility to introduce relatively large arrays on user devices with a small footprint, the ability to determine the user orientation becomes unlocked. The estimation of the full user pose (joint 3D position and 3D orientation) is referred to as 6D localization. Conventionally, the problem of 6D localization using antenna arrays has been considered difficult and was solved through a combination of heuristics and optimization. In this paper, we reveal a close connection between the angle-of-arrivals (AoAs) and angle-of-departures (AoDs) and the well-studied perspective projection model from computer vision. This connection allows us to solve the 6D localization problem, by adapting state-of-the-art methods from computer vision. More specifically, two problems, namely 6D pose estimation from AoAs from multiple single-antenna base stations and 6D simultaneous localization and mapping (SLAM) based on single- base station (BS) mmWave communication, are first modeled with the perspective projection model, and then solved. Numerical simulations show that the proposed estimators operate close to the theoretical performance bounds. Moreover, the proposed SLAM method is effective even in the absence of the line-of-sight (LoS) path, or knowledge of the LoS/non-line-of-sight (NLoS) condition.
引用
收藏
页码:9144 / 9159
页数:16
相关论文
共 50 条
  • [41] Sparse Keypoint Models for 6D Object Pose Estimation
    Sadran, Emal
    Wurm, Kai M.
    Burschka, Darius
    2013 EUROPEAN CONFERENCE ON MOBILE ROBOTS (ECMR 2013), 2013, : 307 - 312
  • [42] 6D Pose Estimation of Objects: Recent Technologies and Challenges
    He, Zaixing
    Feng, Wuxi
    Zhao, Xinyue
    Lv, Yongfeng
    APPLIED SCIENCES-BASEL, 2021, 11 (01): : 1 - 18
  • [43] Generalizable and Accurate 6D Object Pose Estimation Network
    Fu, Shouxu
    Li, Xiaoning
    Yu, Xiangdong
    Cao, Lu
    Li, Xingxing
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT III, 2024, 14427 : 312 - 324
  • [44] Segmentation-driven 6D Object Pose Estimation
    Hu, Yinlin
    Hugonot, Joachim
    Fua, Pascal
    Salzmann, Mathieu
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3380 - 3389
  • [45] Fundamental Coordinate Space for Object 6D Pose Estimation
    Wan, Boyan
    Zhang, Chen
    IEEE ACCESS, 2024, 12 : 146430 - 146440
  • [46] 6D Object Pose Estimation for Robot Programming by Demonstration
    Ghahramani, Mohammad
    Vakanski, Aleksandar
    Janabi-Sharifi, Farrokh
    PROGRESS IN OPTOMECHATRONIC TECHNOLOGIES, 2019, 233 : 93 - 101
  • [47] RobotP: A Benchmark Dataset for 6D Object Pose Estimation
    Yuan, Honglin
    Hoogenkamp, Tim
    Veltkamp, Remco C.
    SENSORS, 2021, 21 (04) : 1 - 26
  • [48] 6D Object Pose Estimation Based on the Attention Mechanism
    Zhou, Guanyu
    INTERNATIONAL CONFERENCE ON ALGORITHMS, HIGH PERFORMANCE COMPUTING, AND ARTIFICIAL INTELLIGENCE (AHPCAI 2021), 2021, 12156
  • [49] Global Hypothesis Generation for 6D Object Pose Estimation
    Michel, Frank
    Kirillov, Alexander
    Brachmann, Eric
    Krull, Alexander
    Gumhold, Stefan
    Savchynskyy, Bogdan
    Rother, Carsten
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 115 - 124
  • [50] 6D ROTATION REPRESENTATION FOR UNCONSTRAINED HEAD POSE ESTIMATION
    Hempel, Thorsten
    Abdelrahman, Ahmed A.
    Al-Hamadi, Ayoub
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2496 - 2500