Direct ink writing of high explosive composites containing metal-organic frameworks

被引:0
|
作者
Kim, Eun-Young [1 ,2 ]
Kim, Seong han [3 ]
Han, Mingu [3 ]
Moon, Su-Young [1 ]
机构
[1] Korea Res Inst Chem Technol, Hydrogen & C1 Gas Res Ctr, Chem & Proc Tehnol, Daejeon 34114, South Korea
[2] Yonsei Univ, Dept Chem & Biomol Engn, 50 Yonsei Ro, Seoul, South Korea
[3] 2nd Directorate Agcy Def Dev, R&D Inst 4th, POB 35-42, Daejeon 34186, South Korea
关键词
GLYCIDYL AZIDE POLYMER; DECOMPOSITION; PERFORMANCE; BINDER; CL-20; RDX;
D O I
10.1039/d4ra03241a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Smart weapon systems are being miniaturised for widespread application in high-energy materials, necessitating the development of processable and printable high explosive (HEs) composites that can be detonated with a small critical diameter. This study presents an efficient strategy for fabricating HE composites with exceptional detonation performance. We developed an HE ink based on 1,3,5-trinitro-1,3,5-triazinane (RDX), consisting of a glycidyl azide polymer (GAP) as a binder and a metal-organic framework (MOF) as an additive. This ink was deposited on an aluminium plate using direct ink writing (DIW). The resulting RDX/MOF composite demonstrated a significantly lower critical diameter (similar to 720 mu m) for detonation compared to a composite without the MOF. This reduction in critical diameter is attributed to the pores inside the MOFs, which enhanced the transfer of heat during detonation, creating an artificial hot-spot that sustained continuous explosion. The fabricated RDX/MOF composite offers a promising approach for developing miniaturized smart weapon systems with improved detonation characteristics. An RDX-based ink containing nanoporous materials and GAP binder was printed on an Al substrate. The patterns containing MOFs demonstrated exceptional detonation properties with long traces owing to the artificial porosity of the MOFs.
引用
收藏
页码:31461 / 31466
页数:6
相关论文
共 50 条
  • [21] Direct Imaging of Protein Clusters in Metal-Organic Frameworks
    Liu, Yu
    Cui, Shitong
    Ma, Wenjun
    Wu, Yibo
    Xin, Ruobing
    Bai, Yunxiu
    Chen, Zhuo
    Xu, Jianhong
    Ge, Jun
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (18) : 12565 - 12576
  • [22] Synthesis of metal-organic frameworks containing organophosphine linkers
    Sternberg, Rebecca
    Wade, Casey
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [23] Metal-organic macrocycles, metal-organic polyhedra and metal-organic frameworks
    Prakash, M. Jaya
    Lah, Myoung Soo
    CHEMICAL COMMUNICATIONS, 2009, (23) : 3326 - 3341
  • [24] Iodine in Metal-Organic Frameworks at High Pressure
    Lobanov, Sergey S.
    Daly, John A.
    Goncharov, Alexander F.
    Chan, Xiaojun
    Ghose, Sanjit K.
    Zhong, Hui
    Ehm, Lars
    Kim, Taejin
    Parise, John B.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2018, 122 (29): : 6109 - 6117
  • [25] Applications of metal nanoparticles/metal-organic frameworks composites in sensing field
    Xu, Jinming
    Ma, Jiao
    Peng, Yi
    Cao, Shuai
    Zhang, Songtao
    Pang, Huan
    CHINESE CHEMICAL LETTERS, 2023, 34 (04)
  • [26] Applications of metal nanoparticles/metal-organic frameworks composites in sensing field
    Jinming Xu
    Jiao Ma
    Yi Peng
    Shuai Cao
    Songtao Zhang
    Huan Pang
    Chinese Chemical Letters, 2023, 34 (04) : 48 - 66
  • [27] Metal-organic frameworks
    James, SL
    CHEMICAL SOCIETY REVIEWS, 2003, 32 (05) : 276 - 288
  • [28] Metal-organic frameworks
    Birkett, Jim
    CHEMICAL & ENGINEERING NEWS, 2017, 95 (30) : 2 - 2
  • [29] Metal-Organic Frameworks and Metal-Organic Cages - A Perspective
    Pilgrim, Ben S.
    Champness, Neil R.
    CHEMPLUSCHEM, 2020, 85 (08): : 1842 - 1856
  • [30] MINI REVIEW: ANTIOXIDANT APPLICATION OF METAL-ORGANIC FRAMEWORKS AND THEIR COMPOSITES
    Alneyadi, Shaikha S.
    HETEROCYCLES, 2021, 102 (04) : 622 - 646