On the uniqueness of solutions to integral equations of the first kind

被引:0
|
作者
Ayupova, N.B. [1 ]
机构
[1] Sobolev Inst. of Mathematics, Acad. Koptyug pros., 4, 630090 Novosibirsk, Russia
来源
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1515/jiip.2002.10.1.13
中图分类号
学科分类号
摘要
In this paper we investigate the uniqueness of solutions to some integral equations of the first kind. Examples of the uniqueness and non-uniqueness of solutions to the first kind one-dimensional integral equations of a special form based on connection with functional equations were constructed. Uniqueness theorems were proved.
引用
收藏
页码:13 / 22
相关论文
共 50 条
  • [21] Existence and construction of generalized solutions of nonlinear volterra integral equations of the first kind
    N. A. Sidorov
    D. N. Sidorov
    Differential Equations, 2006, 42 : 1312 - 1316
  • [22] DISCRETE SUPERCONVERGENCE OF COLLOCATION SOLUTIONS FOR FIRST-KIND VOLTERRA INTEGRAL EQUATIONS
    Liang, Hui
    Brunner, Hermann
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2012, 24 (03) : 359 - 391
  • [23] On the numerical solution of integral equations of the first kind
    Anfinogenov, AY
    Lifanov, IK
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 1998, 13 (03) : 159 - 168
  • [24] A comment on integral equations of the first kind.
    Mollerup, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1910, 150 : 313 - 315
  • [25] Regularization of Some Integral Equations of the First Kind
    Malaspina, Angelica
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 916 - 919
  • [26] On the regularization of Fredholm integral equations of the first kind
    De Micheli, E
    Magnoli, N
    Viano, GA
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (04) : 855 - 877
  • [27] On the numerical solution of integral equations of the first kind
    Russian Journal of Numerical Analysis and Mathematical Modelling, 13 (03): : 159 - 168
  • [28] A Group of Inverse Filters Based on Stabilized Solutions of Fredholm Integral Equations of the First Kind
    Zhang, Zhijie
    Wang, Daihua
    Wang, Wenhan
    Du, Hongmian
    Zu, Jing
    2008 IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-5, 2008, : 668 - 671
  • [29] Extensions of constrained least squares for obtaining regularized solutions to first kind integral equations
    Hilgers, JW
    Bertram, BS
    Reynolds, WR
    INTEGRAL METHODS IN SCIENCE AND ENGINEERING, 2000, 418 : 185 - 189
  • [30] Block collocation boundary value solutions of the first-kind Volterra integral equations
    Ling Liu
    Junjie Ma
    Numerical Algorithms, 2021, 86 : 911 - 932