Utilizing Source Code Syntax Patterns to Detect Bug Inducing Commits using Machine Learning Models

被引:0
|
作者
Nadim, Md [1 ]
Roy, Banani [2 ]
机构
[1] Software Research Lab (SRLab), Department of Computer Science, USASK, Saskatoon,SK, Canada
[2] Department of Computer Science, USASK, Saskatoon,SK, Canada
来源
arXiv | 2022年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Bug detection - Bug inducing commit - Deep belief networks - Defect prediction - Explainability of bug detection - Just in time defect prediction - Just-in-time - Source code syntax pattern - Source codes - Token pattern - Token sequences
引用
收藏
相关论文
共 50 条
  • [41] Open-source QSAR models for pKa prediction using multiple machine learning approaches
    Kamel Mansouri
    Neal F. Cariello
    Alexandru Korotcov
    Valery Tkachenko
    Chris M. Grulke
    Catherine S. Sprankle
    David Allen
    Warren M. Casey
    Nicole C. Kleinstreuer
    Antony J. Williams
    Journal of Cheminformatics, 11
  • [42] Development of an Efficient Method to Detect Mixed Social Media Data with Tamil-English Code Using Machine Learning Techniques
    Fha, Shibly
    Sharma, Uzzal
    Naleer, Hmm
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2023, 22 (02)
  • [43] Machine learning models to detect and predict patient safety events using electronic health records: A systematic review
    Deimazar, Ghasem
    Sheikhtaheri, Abbas
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2023, 180
  • [44] Hybridization of Air Quality Forecasting Models Using Machine Learning and Clustering: An Original Approach to Detect Pollutant Peaks
    Tamas, Wani
    Notton, Gilles
    Paoli, Christophe
    Nivet, Marie-Laure
    Voyant, Cyril
    AEROSOL AND AIR QUALITY RESEARCH, 2016, 16 (02) : 405 - 416
  • [45] Enhanced detection of low-rate DDoS attack patterns using machine learning models
    Bocu, Razvan
    Iavich, Maksim
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2024, 227
  • [46] Source code auto-completion using various deep learning models under limited computing resources
    Madhab Sharma
    Tapas Kumar Mishra
    Arun Kumar
    Complex & Intelligent Systems, 2022, 8 : 4357 - 4368
  • [47] Detecting ChatGPT-Generated Code Submissions in a CS1 Course Using Machine Learning Models
    Hoq, Muntasir
    Shi, Yang
    Leinonen, Juho
    Babalola, Damilola
    Lynch, Collin
    Price, Thomas
    Akram, Bita
    PROCEEDINGS OF THE 55TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, SIGCSE 2024, VOL. 1, 2024, : 526 - 532
  • [48] Source code auto-completion using various deep learning models under limited computing resources
    Sharma, Madhab
    Mishra, Tapas Kumar
    Kumar, Arun
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (05) : 4357 - 4368
  • [49] Predicting Code Hotspots in Open-Source Software from Object-Oriented Metrics Using Machine Learning
    Hilton, Rod
    Gethner, Ellen
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2018, 28 (03) : 311 - 331
  • [50] End-to-end Optimization of Source Models for Speech and Audio Coding Using a Machine Learning Framework
    Backstrom, Tom
    INTERSPEECH 2019, 2019, : 3401 - 3405